

ngVLA Ref. Design for Front End and Cryogenics

W. Grammer, D. Urbain, S. Sturgis

URSI meeting Boulder CO, 9-12 January 2019

Introduction and General Requirements

- Proposed ngVLA has 244 18m antennas and 19 6m antennas, ~10 times that of the VLA
 - Key requirement is to minimize operating cost to within 3 x VLA
 - Reduce total number of dewars by consolidating receiver bands
 - Reduce total number of RXs by employing wideband feeds, where feasible
 - Efficient cryogenic system that optimizes power consumption and reduced required maintenance
- "Reference" design concept for ngVLA receivers, feeds:
 - A feasible design with relatively low technical risk and well-defined costs
 - Maximizing sensitivity is the primary goal; wide bandwidths are secondary
 - Wide-angle feeds are highly compact, can be cooled => *lower overall Tsys*
 - Good aperture efficiency and low spillover noise, for optimum sensitivity

Reference Front End Subsystem

3

Specific Design Assumptions

- Near-continuous frequency coverage from 1.2 116 GHz
 - Coverage gap from 50.5 70 GHz (O₂ absorption band)
- Feed horn has a beam half-angle of ~55 degrees.
- Receivers are single-pixel, with linearly-polarized outputs
- Feeds and LNAs in all bands are cryogenically cooled.
- Antenna is an unblocked, offset Gregorian geometry, with shaped optics, low spillover by design, ~160um RMS surface accuracy
- Nominal VLA site conditions: 6mm PWV, 45° elevation angle (1 mm PWV assumed for W-band)

ngVLA Reference Front End Configuration

- Six receivers (Bands 1-6), in a pair of compact cryogenic dewars
- Band 1 (1.2 3.5 GHz) in Dewar 'A':
 - Almost identical to the Caltech ngVLA receiver concept [1], but without the high-frequency bands and dewar extension. Feed cooled to 80K, LNAs to 20K.
 - ~3:1 bandwidth quad-ridged feed horn (QRFH) & LNAs, to cover L+S bands
- Bands 2-6 (3.5 116 GHz) in Dewar 'B':
 - Band 2 uses 3.5:1 QRFH & LNAs, to cover C+X bands
 - Bands 3-6 use ~1.67:1 bandwidth axially-corrugated feeds & LNAs, for more optimum aperture efficiency, spillover and noise performance.
 - Corrugated feed based on NRC DVA-1 octave-bandwidth design, scaled for ngVLA band frequencies [2].

Band 1 Receiver (Dewar 'A') Concept

- Based on design by S. Weinreb, H. Mani (Caltech/ASU)
- Cylindrical dewar houses cooled QRFH (80 K), coaxial LNAs (20 K)
- Challenges presented
 - Large vacuum window (Resistance to pressure, low RF attenuation)
 - RF connection between the feed and the RF tree (good thermal isolation with low insertion loss)

Thermal Analysis, Dewar 'A'

Approximate Dewar dimensions & mass
 458 x 406 mm (Dia. X H)

67 liters and 60 kg

- Ambient Temperature 20°C, vacuum 10⁻⁶ mbar
 - 1st stage 9.88W at 50°K
 - 2nd stage 3.08W at 15°K
- Single GM cryocooler, variable speed

Note: Data from Callisto Thermal Study Analysis Report

7

(photo courtesy S. Weinreb, Caltech, 2018)

Spillover Noise is with conservative assumption that ½ the total spillover is at 250K

Band 2-6 Receiver (Dewar 'B') Concept

- Rectangular dewar, inline bands
- Feed phase centers aligned on a lateral axis
- Modular receiver subassemblies
- Individual bands required minimal disassembly to be replaced, however operation can not be performed on the antenna
- Failure of any critical component will require a receiver swap

Thermal Analysis, Dewar 'B'

- Approximate Dewar size & mass
 725 x 260 x 300 mm (L x W x H)
 57 liters and 60 kg
- Ambient Temperature 20°C, vacuum 10⁻⁶ mbar
 - 1st stage 18.4W at 50°K
 - 2nd stage 4.3W at 15°K
- Single GM Cryocooler , variable speed

Note: the thermal loads will go up with the outside temperature

10

(photo courtesy S. Srikanth, NRAO, 2018)

Front End + Optics Performance Estimates

Band	f_L	f _м	f _н	BW	Aper	ture Eff.	<i>Eff.,</i> η _Α		Spillover, K		Т _{RX} , К		
#	GHz	GHz	GHz	GHZ	$@f_L$	@f _M	@f _H	$@f_L$	@f _M	@f _H	$@f_L$	@f _M	@f _H
1	1.2	2.0	3.5	2	0.80	0.79	0.74	13	10	4	9.9	10.3	13.8
2	3.5	6.6	12.3	8.8	0.80	0.78	0.76	13	7	4	13.4	15.4	14.4
3	12.3	15.9	20.5	8.2	0.84	0.87	0.86	4	4	4	13.9	16.9	18.6
4	20.5	26.4	34	13.5	0.83	0.86	0.83	4	4	4	15.4	16.2	19.5
5	30.5	39.2	50.5	20	0.81	0.82	0.78	4	4	4	19.1	20.4	26.5
6	70	90.1	116	46	0.68	0.61	0.48	4	4	4	50.6	49	72.6

Band	T _{FEED}		Т _{SKY} , К			T _{sys} , K		(T _S	_{γs} /η _A)	, К	Arro	ay SEFD), Jy
#	К	$@f_L$	@f _M	@f _H	$@f_L$	@f _M	@f _H	$@f_L$	@f _M	@f _H	$@f_L$	@f _M	@f _H
1	80	4.4	4.5	4.6	28	26	23	35	33	32	1.55	1.44	1.39
2	20	4.6	4.7	5.3	32	28	25	40	36	32	1.75	1.59	1.42
3	20	5.3	6.3	13.6	24	28	37	29	32	43	1.27	1.43	1.91
4	20	13.6	12.1	12.4	34	33	37	41	39	44	1.80	1.72	1.95
5	20	11.1	16.9	70.3	35	42	102	43	51	130	1.91	2.27	5.73
6	20	68	15	112	123	68	189	181	112	394	7.96	4.92	17.36

Antenna Receiver Platform Movable in X-Y for Band Selection and Focus Adjustment

IRD: Integrated Receiver/Downconverter and Digitizer

Future Work

- Feed horn development:
 - Optimize QRFH profile for reduced backlobe and flatter efficiency over a 3.25:1 bandwidth, for the opening angle of the ngVLA antenna.
 - Optimize corrugated feed horn efficiency over **1.67:1** bandwidth
 - Accurate pattern measurements of reference horns for both types
- Conceptual Designs for Dewars 'A' and 'B':
 - Improved Trx on Bands 1 & 2: eliminate noise cal coupler?
 - Detailed Band 3-6 mechanical design/modeling, test dewar construction.
- Integration of receiver packages with back-end and support electronics, X-Y positioner at the antenna focus – mechanical design

Front End Summary

- Compact two-dewar solution to achieve full 1.2-116 GHz coverage
- Optimum sensitivity achieved with:
 - Compact, cooled feed horns with high aperture efficiency (>75%)
 - Waveguide-bandwidth receivers above X-band, for lower input losses and near-optimum LNA noise performance across the full band.
 - Two-stage G-M cryocoolers to get LNA temps < 20K.
- Reduction in relative operating costs through:
 - Employing wideband QRFHs below X-band, to cut # of RXs by half.
 - Use of modern variable-speed drives for cryocoolers and He compressors, and intelligent monitoring/control for optimizing their power usage.

Reference Cryogenic Subsystem

Introduction

- The ngVLA may have up to **526** cryocoolers, versus **216** for the VLA.
- On the VLA, cryocoolers and compressors run at a fixed-speed
 - Oversized cryocooler: extra cooling capacity that is not needed to get the required performance out of the Front End. Compensation for a non optimized thermal design.
 - Oversized compressor: each compressor produces an excess of Helium flow to avoid starving the cryocooler.
 - As power consumption is proportional to available He flow => <u>power is being</u> <u>wasted by delivering more flow capacity than needed for steady-state ops.</u>
- ngVLA cryocoolers and compressors will be variable-speed
 - Cryocooler & compressor speeds adjustable, to match cooling requirements.
 - Operating cost savings from **30-50%** possible, against a fixed-speed system
 - Prototype systems under development at NRAO (VLA Green Antenna initiative)

ngVLA GM Refrigerator

 Cryogenic Cold-head Model Trillium 350CS in use at the VLA with demonstrated good reliability (VLA data mtbm > 17000hrs including preventive maintenance)

	Refrigeration capacity
First stage at 77°K	20 Watts
Second stage at 20°K	5 Watts

- In-house Designed Variable Frequency Drive 30-70Hz
- Estimated Flow at 60Hz 12.5scfm

20

Compressor Development by Sumitomo SHI

FA40 Integration into FA70 outdoor enclosure

- Phase 1:
 - Build FA40 prototype with VFD (completed)
 - Measure the performances: flow vs power (completed)
 - Measure RFI and design shielded enclosure for electronics (pending)
- Phase 2 (pending available funding):
 - Integrate FA40 capsule into a FA70 outdoor enclosure
 - Relocate control/power electronics to an outdoor-rated RFI enclosure. (ngVLA prototype)

Delta P	300/100
Flow [scfm]	25
Power[k W]	3.4
Freq. [Hz]	34

VLA and ngVLA Cryogenics Comparison Table

	VLA	ngVLA	Rel. Cost
Antennas	27 x 25m	214 x 18m + 19 x 6m + 30 x 18m	n/a
He compressor	3 x 27 = 81	1 x 263 = 263	3.25
AC power consumption	81 x 6 = 486kW	263 x 3.4 = 895kW	1.85
Cryocooler Model(s)	1 x Model 22, 6 x Model 350, 1 x Model 1050	2 x Model 350	n/a
Cryocoolers	8 x 27 = 216	263 x 2 = 526	2.43
Estimated cryocooler maintenance index	27 x (1 x 3 + 6 x 1 + 1 x 1) = 270	263 x (2 x 0.66) = 350	1.3

Advanced Cryocooler Study

- Collaboration with Northrop Grumman
- Dual cooler system
 - Single stage Stirling (110K stage)
 - Dual stage Stirling and pulse tube (50K and 15K stages)
- Maintenance free, flexure-bearing, non-wearing technology developed for space application
- Higher efficiency than the proposed reference design GM cooler
- Cost unknown at this time. Could this type of cryocooler be produced in large quantity and at a reasonable price?
- External liquid cooler required (already needed for other systems on the antenna)

ngVLA Front End Cryogenics Summary

- Cryogenic equipment selected for the reference design
 - Uses well-established technology, with proven reliability
 - Variable speed control to minimize power consumption and increase maintenance intervals
 - In-house expertise for service and repair => lower overall maintenance cost
 - Meet the operation budget set for the project
- More advanced type of cryocoolers under investigation for the design phase

References

[1] Weinreb, S. and Mani, H., "Low Cost 1.2 to 116 GHz Receiver System – a Benchmark for ngVLA", ngVLA Science Workshop presentation, June 2017. Excerpted content used with permission from the authors.

[2] Baker, L. and Veidt, B., "DVA-1 Performance With An Octave Horn From CST & GRASP Simulations", Internal NRC Report, March 2014. Excerpted content used with permission from the authors.

[3] Baker, L., "Analysis of ngVLA Design #6 With Ideal and Actual Feed", Internal ngVLA Doc. # 020.25.01.00.00-0001-REP, January 2018

[4] L. D'Addario, "Advanced Cryocoolers For Next Generation VLA" ngVLA Memo No. 24

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Reference Front End Band Frequencies

Band #	Dewar #	∫⊥ GHz	f _м GHz	f _н GHz	f _H :f _L	BW GHZ
1	А	1.2	2.0	3.5	2.92	2.3
2	В	3.5	6.6	12.3	3.51	8.8
3	В	12.3	15.9	20.5	1.67	8.2
4	В	20.5	26.4	34	1.66	13.5
5	В	30.5	39.2	50.5	1.66	20
6	В	70	90	116	1.66	46

