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Key Science Drivers of Radio Astronomy:
Large-N Small Diameter (LNSD) Paradigm

Transients/Time-domain
• Wide fields of view
• Large number of antennas 

for collecting area
• High time cadence, fast 

writeouts

Cosmology
Large scale structure

• Wide fields of view
• Compact Aperture Size
• Large Number of antennas 

for Collecting area
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Modern Radio Telescopes
MWA

LOFAR

SKA-mid

HERA

LWA1
CHIME

SKA-low



Aperture Synthesis in 
Existing Radio Interferometry Architecture

• Aperture / image planes related by FT
• Spatial correlation: Computationally expensive for Large-N telescopes
• Architectural redesign?
• Convolution theorem of Fourier Transform:

FT(Correlation)     ßà FT(.) x FT(.)

Traditional / Correlation-based Direct Imaging (FT and square)

FT

Image credit: Adam Beardsley



A limited implementation of Direct Imaging
• Antennas placed on a grid 

and perform spatial FFT 
of antenna voltages on 
grid to get complex 
voltage images

• Square the transformed 
complex voltage image to 
obtain real-valued 
intensity images

• Current implementation: 
– 8x8 array in Japan 

(Daishido et al. 2000)
– 4x8 BEST-2 array at 

Radiotelescopi de 
Medicina, Italy (Foster et 
al. 2014)

Foster et al. (2014)



Need for generic direct imaging
Hurdles with current 

implementations

• Uniformly arranged arrays 
have poor point spread 
functions – thus not ideal 
for imaging

• Aliasing of objects from 
outside field of view

• Assumptions of identical 
antennas => poor 
calibration

• Calibration still requires 
antenna correlations

MOFF algorithm 
Morales (2011)

• Antennas need not be on a grid 
but still exploit FFT efficiency

• Can customize to science needs
• Accounts for non-identical 

antennas
• Calibration does not require 

forming visibilities
• Can handle complex imaging 

issues - w-projection, time-
dependent wide-field 
refractions and scintillations 

• Optimal images



EPIC: E-field Parallel Imaging Correlator
EPIC implementation of Direct Imaging

FX EPIC

Thyagarajan et al. (2017)O(Na
2) O(Ng log Ng)

Fast Imaging
(With calibration)

Gridding 
makes it 
generic

Traditional / Correlation-based Direct Imaging
FT(Correlation) FT(.) x FT(.)



EPIC implementation of MOFF imaging

Image: Thyagarajan et al. (2017)Image: Beardsley et al. (2017)

Heterogeneous ArrayHomogeneous Array

Gridding



EPIC – Generic Direct “Fourier Optics” 
Imaging for Radio Interferometry

• Allows arbitrary layouts (diverse science goals)
• Allows heterogeneous arrays (non-identical 

antennas) e.g. LWA1—LWASV – VLA, or 
antenna-to-antenna variations

• Works trivially and efficiently for redundant 
arrays such as HERA. E.g., FFT correlator/FFT 
imager being developed for HERA is just a 
special case of EPIC architecture.

• Simultaneous all-sky beamforming

Fast, generic, wide-field radio camera for large-N arrays



EPIC on LWA1 Data
• TBN data with a 

total of 2s and 100 
kHz

• Image obtained 
with 20 ms, 80 kHz

• Cyg A and Cas A 
prominently 
visible

Thyagarajan et al. (2017)

Data credit: LWA1 team,  Jayce Dowell, Greg Taylor 



Fast Transient Capabilities:
EPIC on OVRO-LWA Data

188 core antennas (200m dia.)
47 MHz, 2.6 MHz bandwidth
Cadence 0.04 ms

Data credit: OVRO-LWA team,  Ryan Monroe, Gregg Hallinan



Economic Data Writeout Rates

• Data rate ~Ng for EPIC

• Data rate ~Na
2 for visibilities to 

be written out

• EPIC lowers data rates 

significantly in modern/future 

telescopes 

• EPIC also yields “Science-ready” 

calibrated images on short 

timescales

• Ideal for bright, fast (e.g. FRB, 

MSP) and slow transients with 

large-N dense arrays 

Assumes writeout timescale of 10 ms

Telescope

Data rate 

(EPIC)

GB/s

Data rate 

(FX/XF)

GB/s



Current and future telescopes in EPIC-FX 
parameter space

• Top left is where MOFF is 
more efficient than FX

• Dashed line shows where 
expanded HERA will be

• Shaded area is where LWA 
will evolve to be

• Large-N dense layouts 
favor EPIC

• EPIC will benefit most of 
future instruments (LNSD)

EPIC

FX

A6
A12

A6: 0.1 TFLOPS (10 MHz)
13 TFLOPS (90 MHz)

A12: 2.4 TFLOPS (10 MHz)
272 TFLOPS (90 MHz)

MWA-II 
Core

LO
FA

R



Image Credit: Greg Taylor (PI: LWA-SV)

LWA-Sevilleta (LWA-SV), New Mexico

~ 100 m



LWA-SV Parameters
• 257 dual polarization LWA dipoles
• Dense 110 m x 100 m aperture
• 10-88 MHz frequency coverage
• 20 MHz bandwidth (beamforming + imaging) 
• New Digital Processor using 16 Roach 2 

boards and 7 GPU servers 
• Bifrost architecture for Data processing

Image Credit: Greg Taylor



EPIC in action:
First Light with EPIC on LWA-SV

Time cadence: 50 ms Image credit: EPIC team Kent, …, NT et al. (in prep.)



EPIC Throughput 
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* Single GPU card



EPIC Parameter Space Coverage 

• All-sky
• Real-time
• High time-resolution
• Continuous operation
• All timescales: Tens of 

microseconds – milliseconds –
seconds – minutes – hours
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y 
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Timescale

EPIC

HoursμS

EPIC

EPIC EPIC



EPIC on LWA-Sevilleta: NSF Grant Objectives

Task 1
• Process real data through “software EPIC” –

verify  it can handle real-world data and artifacts 

LWA1

OVRO-LWA 

LWA-SV

–MWA-II Core VCS 

(in progress)
120 Antennas inside 
250m x 250m core

Image Credit: Randall Wayth



EPIC on LWA-Sevilleta: NSF Grant Objectives

Task 2
Implement GPU-based EPIC on LWA-SV      
Implementation performance
Optimize to LWA-SV system parameters



EPIC on LWA-Sevilleta: NSF Grant Objectives

Task 3

EPIC image 
quality verification 
with FX approach

Compare to 
known sky models



EPIC on LWA-Sevilleta: NSF Grant Objectives

Task 4
Implement a blind 

search for transients
• Start with low DM De-

dispersion (local FRBs, 
Galactic pulsars)

• Monitor 7 known 
millisecond pulsars 
with the LWA, search 
for more

• Circular polarization to 
monitor exoplanets for 
auroral bursts



EPIC on LWA-Sevilleta: NSF Grant Objectives

Task 5

• Evaluate performance, 
potential and scalability for 
– SKA1
– LWA swarm (network)
– HERA-III 

• Inputs to Astro2020 decadal 
survey



EPIC Summary
• EPIC is one of the most generic / fast / efficient versions of a direct imager and 

inherently a science-ready radio architecture
• EPIC is promising for most modern/future telescopes (LWA, LWA Swarm, ngLOBO-

low, SKA1-low, HERA, CHIME, MWA II/III core, etc.) that have dense layouts 
– Time domain Universe

• Fast writeouts
• Economic data rates
• Calibrated images at no additional cost

– Cosmology studies
• Large-N dense arrays for sensitivity to large scales

• NSF funded deployment on LWA-Sevilleta underway
• First light observed with EPIC on LWA-Sevilleta in real-time (Kent et al. in prep.)
• Opens up many science and technology applications currently not feasible
• EPIC paper - Thyagarajan et al. 2017, MNRAS, 467, 715
• Calibration paper (EPICal) - Beardsley et al. 2017, MNRAS, 470, 4720 
• Highly parallelized EPIC implementation publicly available -

https://github.com/nithyanandan/EPIC/
• Postdoc opportunities at ASU: https://sese.asu.edu/about/opportunities/other

https://github.com/nithyanandan/EPIC/

