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Stellar Radio Emission
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Figure 3 Radio spectra of the RS CVn binary HR 1099 (upper set) and the dMe dwarf
UV Cet (lower set) at different flux levels. The gently bent spectra are indicative of gyrosyn-
chrotron emission, and the high-frequency part of the U-shaped spectra for UV Cet has been
interpreted as a gyroresonance component (HR 1099 spectra: courtesy of S.M. White).  From Guedel, 2002
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A Multifrequency Approach

= ¢ K emission f : Exoplanets

ange of peak emission frequencies 300 objects (<300 pc)

and spectra Dec limits

Employ 3 radio sky surveys to Taurus Young Stellar Objects 7.« .....
search for emission 346 objects ’

Look at various (4) populations of :

_ (4) pop Upper Scorpius YSOs

interest 863 objects

Nearby Stars (RECONS)

652 objects
90% complete within 10 pc




What Can We Hope to Find?

e Flaring events
o Transient bursts of higher emission
o Greatest chance for direct detection?

e Quiescent emission

o Observed during inactive times
o Statistically different from other samples on the sky?



Point-by-Point Matching

Direct detection method

Check whether objects of interest are within a synthesized beam from a detected
radio source GJ 3954
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Ensemble Detections

Cut out subimages centered on the objects of interest
Low resolution -> point sources -> pixel arithmetic/comparisons
2 methods:

e Image stacking
e Non parametric statistical tests



Ensemble Detections - Stacking Analysis

Add together images centered on the objects of interest to reduce rms noise and

increase coherent signals.
Weighted stacking of each image:

IMy = Zw,* IM,

) W;
Where:

w; = 1/(rms;)?
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Ensemble Detections - 2-Sample Statistical Tests ZAN

Compare the distributions of center pixel values
to all other values

Anderson-Darling Test - are the samples drawn
from different distributions?

Take median test significance of all pixel
comparisons

Cumulative
Distribution
Function

[



Ensemble Detections - Simulating Emission

At what flux level would these methods make a significant detection?

Simulate sources - impose a peak flux, convolve with synthesized beam, add to
subimage

Repeat analysis techniques until the desired significance is met

Establish upper limits on emission



Ensemble Detections - Simulating Emission

e 1 mdyto 100 mdy

e /4 MHz

e Exoplanet sample

Stacking Analysis

2-sample Statistical Test

Injected Peak Flux

Resulting rms noise

Signal-to-Noise Ratio

Confidence Interval

1 mJy 0.460 ~90%
5 mdy 7.03 mJdy/beam 0.540
90% < x < 95%
10 mdy 0.640
50 mJy 1.390 95% < x < 98%
7.04 mJy/beam
100 mdy 2.180 > 99%




Future Directions

Follow up observations for the potential direct detections

Additional instruments and sky surveys including VLASS at 2-4 GHz

Targeted surveys



Summary

Searching for radio emissions to tell us about exoplanets and exosolar systems

A few tentative direct detections
Combining images constrains quiescent/average emission

Still a few orders of magnitude to go, probably



Thank you for your time!



Point-by-Point Matching Results

IRAS 04295+2251 (TGSS)
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oint-by-Point Matching Results

IRAS 04295+2251 (NVSS)
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Point-by-Point Matching Results

HD 52265 (NVSS)

0.016

HD 28678 (NVSS)
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HR 1099
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