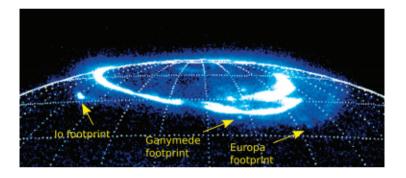
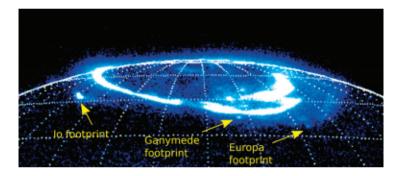
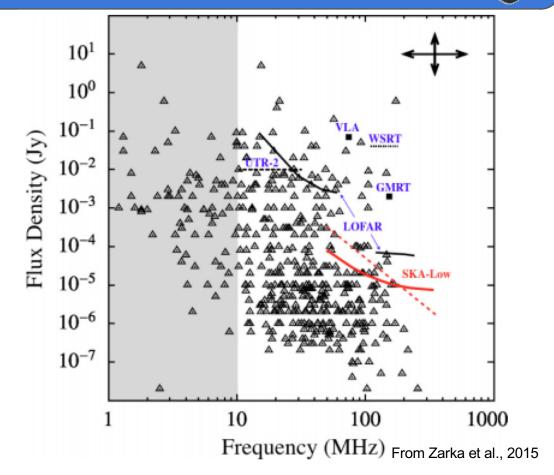

Searching for Low-Frequency Radio Emissions from Young Stars and Exoplanets

Jason Ling Rice University NRSM URSI Meeting 10 January 2019


Cyclotron Maser Instability

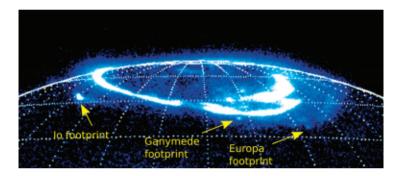
Cyclotron Maser Instability

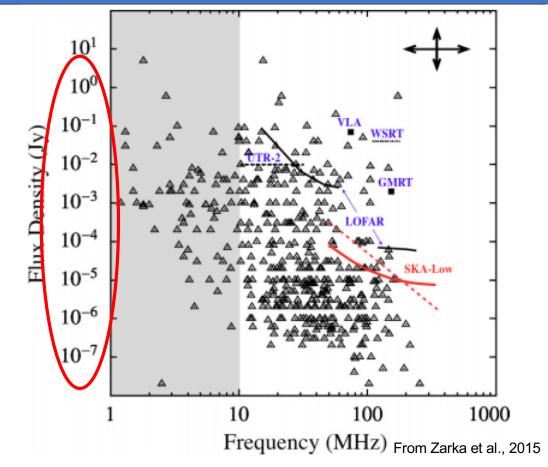

Peak frequency scales with planetary magnetic field



Cyclotron Maser Instability

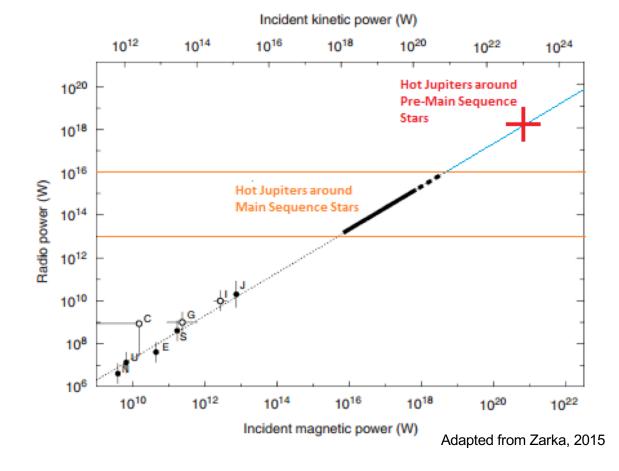
Peak frequency scales with planetary magnetic field

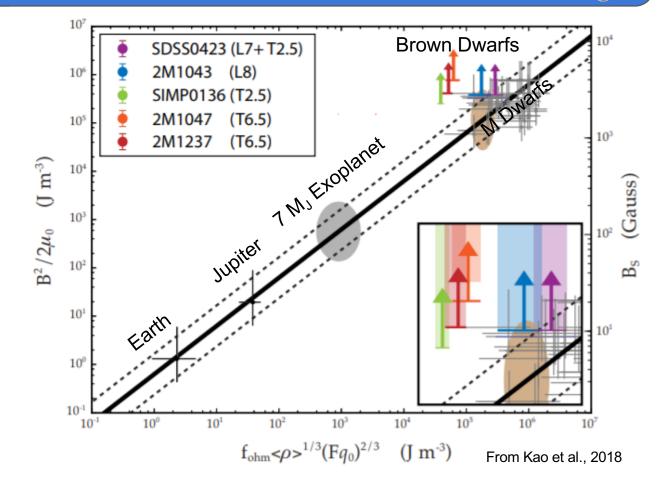




Cyclotron Maser Instability

Peak frequency scales with planetary magnetic field



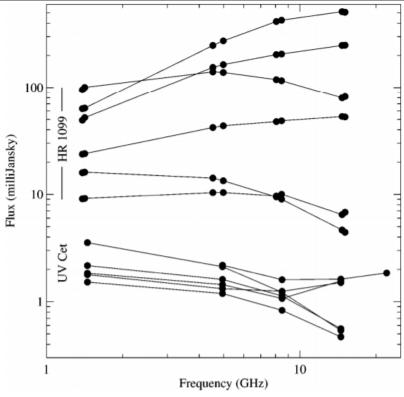

Cyclotron Maser Instability

Peak frequency scales with planetary magnetic field

Cyclotron Maser Instability

Peak frequency scales with planetary magnetic field

Stellar Radio Emission


Gyromagnetic

Thermal Bremsstrahlung

Radio Flares

Youngers stars may be more active

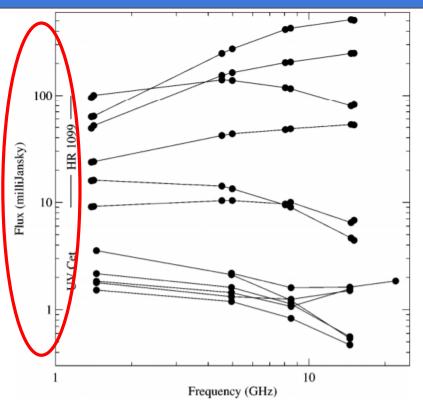
Figure 3 Radio spectra of the RS CVn binary HR 1099 (*upper set*) and the dMe dwarf UV Cet (*lower set*) at different flux levels. The gently bent spectra are indicative of gyrosynchrotron emission, and the high-frequency part of the U-shaped spectra for UV Cet has been interpreted as a gyroresonance component (HR 1099 spectra: courtesy of S.M. White). From Guedel, 2002

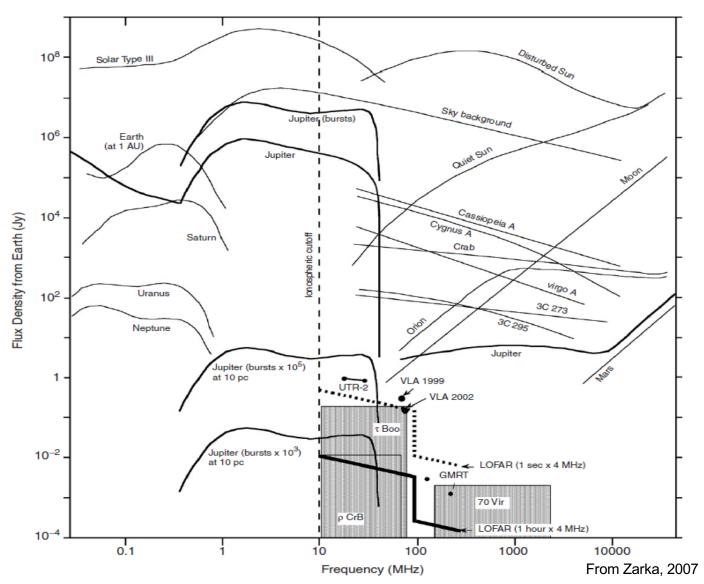
Stellar Radio Emission

Thermal Bremsstrahlung

Radio Flares

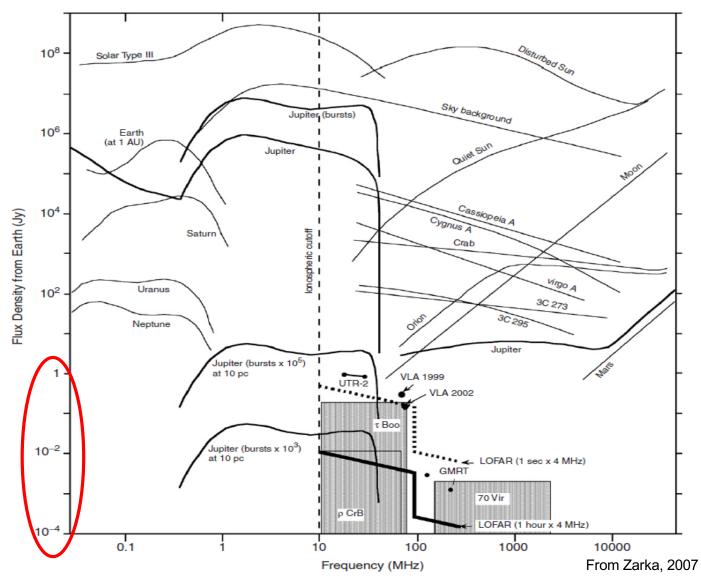
Youngers stars may be more active




Figure 3 Radio spectra of the RS CVn binary HR 1099 (*upper set*) and the dMe dwarf UV Cet (*lower set*) at different flux levels. The gently bent spectra are indicative of gyrosynchrotron emission, and the high-frequency part of the U-shaped spectra for UV Cet has been interpreted as a gyroresonance component (HR 1099 spectra: courtesy of S.M. White). From Guedel, 2002

Radio Spectra

Planetary emission comparable to stellar


Note bursts/flares compared to quiescent emission

Radio Spectra

Planetary emission comparable to stellar

Note bursts/flares compared to quiescent emission

Low frequency (< 10 GHz) radio emissions

Low frequency (< 10 GHz) radio emissions

Exoplanetary origin?

- Magnetic fields
- Independent detection method

Low frequency (< 10 GHz) radio emissions

Exoplanetary origin?

- Magnetic fields
- Independent detection method

Stellar origin?

- Interplanetary radiation environment
- Stellar activity

Hard to disentangle

Low frequency (< 10 GHz) radio emissions

Exoplanetary origin?

- Magnetic fields
- Independent detection method

Stellar origin?

- Interplanetary radiation environment
- Stellar activity

Hard to disentangle

Low frequency (< 10 GHz) radio emissions

Exoplanetary origin?

- Magnetic fields
- Independent detection method

Stellar origin?

- Interplanetary radiation environment
- Stellar activity

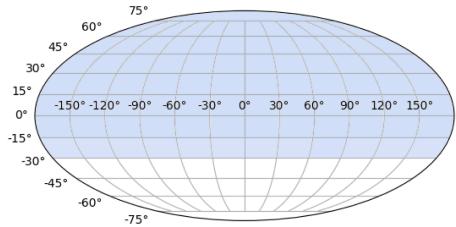
Hard to disentangle

Habitability!

Range of peak emission frequencies and spectra

Employ 3 radio sky surveys to search for emission

Look at various (4) populations of interest



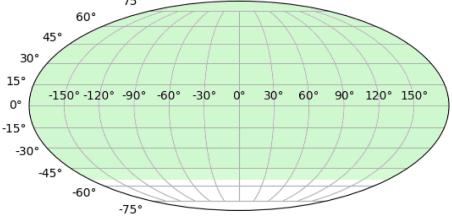
Range of peak emission frequencies and spectra

Employ 3 radio sky surveys to search for emission

Look at various (4) populations of interest

uencies and

74 MHz 100 mJy/beam rms noise 75" resolution 90,000 radio sources detected 2001-2007


VLSSr

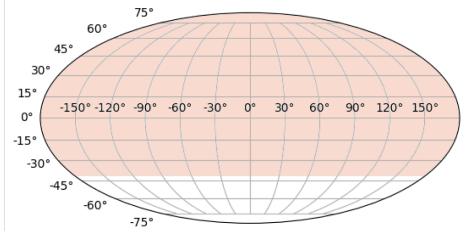
Range of peak emission frequencies and spectra

Employ 3 radio sky surveys to search for emission

Look at various (4) populations of interest

60° 75°

150 MHz 3.5 mJy/beam rms noise 25" resolution 630,000 radio sources detected 2010-2012


TGSS

Range of peak emission frequencies and spectra

Employ 3 radio sky surveys to search for emission

Look at various (4) populations of interest

NVSS

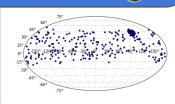
1.4 GHz 0.45 mJy/beam rms noise 45" resolution 1,800,000 radio sources detected 1993-1996

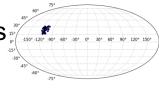
Range of peak emission frequencies and spectra

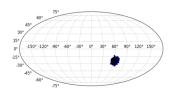
Employ 3 radio sky surveys to search for emission

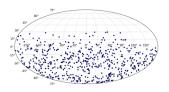
Look a	at	various	(4)	populations	of
intere	st				

Exoplanets


300 objects (<300 pc) Dec limits


Taurus Young Stellar Objects 346 objects


Upper Scorpius YSOs 863 objects


Nearby Stars (RECONS)

652 objects 90% complete within 10 pc

What Can We Hope to Find?

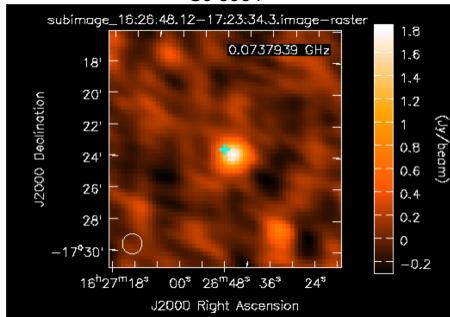
• Flaring events

- Transient bursts of higher emission
- Greatest chance for direct detection?

• Quiescent emission

- Observed during inactive times
- Statistically different from other samples on the sky?

Point-by-Point Matching


Direct detection method

Check whether objects of interest are within a synthesized beam from a detected GJ 3954

14 Tentative detections:

- 1 at 74 MHz
- 3 at 150 MHz
- 10 at 1.4 GHz

Follow up observations needed

Ensemble Detections

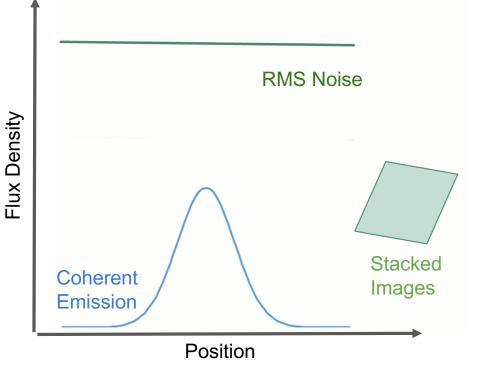
Cut out subimages centered on the objects of interest

Low resolution -> point sources -> pixel arithmetic/comparisons

2 methods:

- Image stacking
- Non parametric statistical tests

Ensemble Detections - Stacking Analysis

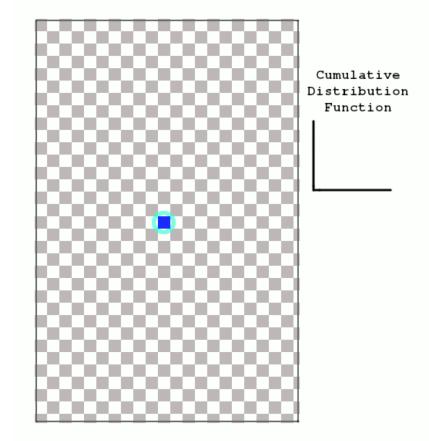

Add together images centered on the objects of interest to reduce rms noise and increase coherent signals.

Weighted stacking of each image:

 $IM_{N} = \underline{\Sigma \ w_{i} * IM_{i}}{\Sigma \ w_{i}}$

Where:

 $w_i = 1/(rms_i)^2$


Ensemble Detections - 2-Sample Statistical Tests

Compare the distributions of center pixel values to all other values

Anderson-Darling Test - are the samples drawn from different distributions?

Take median test significance of all pixel comparisons

Ensemble Detections - Simulating Emission

Simulate sources - impose a peak flux, convolve with synthesized beam, add to subimage

Repeat analysis techniques until the desired significance is met

Establish upper limits on emission

Ensemble Detections - Simulating Emission

- 1 mJy to 100 mJy
- 74 MHz
- Exoplanet sample

	Stacking	2-sample Statistical Test		
Injected Peak Flux	Resulting rms noise	Signal-to-Noise Ratio	Confidence Interval	
1 mJy		0.46 <i>o</i>	~90%	
5 mJy	7.03 mJy/beam	0.54 <i>o</i>	90% < x < 95%	
10 mJy		0.64 <i>o</i>		
50 mJy	7.04	1.39 <i>o</i>	95% < x < 98%	
100 mJy	7.04 mJy/beam	2.18 0	> 99%	

Future Directions

Follow up observations for the potential direct detections

Additional instruments and sky surveys including VLASS at 2-4 GHz

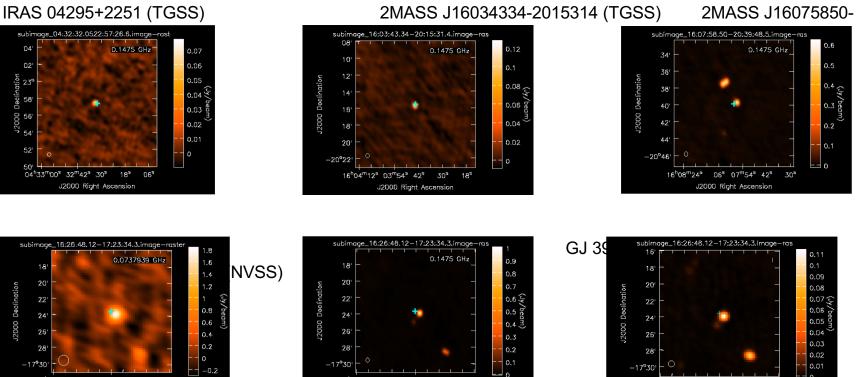
Targeted surveys

Summary

Searching for radio emissions to tell us about exoplanets and exosolar systems

- A few tentative direct detections
- Combining images constrains quiescent/average emission
- Still a few orders of magnitude to go, probably

Thank you for your time!



- 0

16^h27^m18^s 00^s 26^m48^s 36^s 24^s

J2000 Right Ascension

Point-by-Point Matching Results

16^h27^m18^s 00^s 26^m48^s 36^s 24^s

J2000 Right Ascension

subin

Û4

02

50

Decl

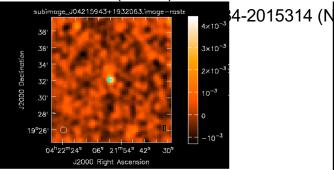
000

. 16^h27^m18^s

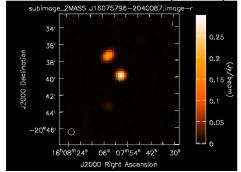
00° 26^m48° 36°

J2000 Right Ascension

24^s

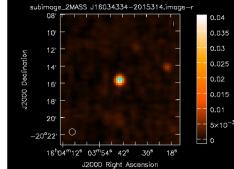

2039

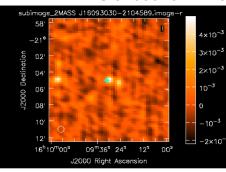
Point-by-Point Matching Results


04

V* T Tau (NVSS)

EPIC 204830786 (NVSS)

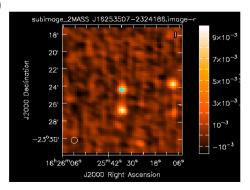



S×1D

5×10

1×10

 2×10



18° 06°

J2000 Right Ascension

04h33m00s 32m42s 30s

1RXS J160929.1-210524 (NVSS)

Point-by-Point Matching Results

HD 28678 (NVSS) subimage_04:31:25.45+04:34:31.04.image_ra subimage_07:00:18.01-05:22:01.53.image 0.012 0.01 J2000 Declination 8×10 3£ 34 ×10 32 26 -5°28 4°28 07^h00^m48^s 30^s 36° 24^s 12^s 00^{s} 04^h31^m54^s J2000 Right Ascension 53-02:23:43,44.ir 4×10⁻³ subi 3×10⁻ 20 2×10⁻ J2000 Declínatíor 22 J2000 Declí 24 1.0⁻³ 32 26 30 25

22h58m42s

24³ 12[°]

J2000 Right Ascension

00° 57^m48'

J2000 Right Ascension 03:42:29.45+12:31:33.7.ímage-ras 9×10⁻³ 7×10 5x10 $\times 10$

18° 06° 06^h59^m4

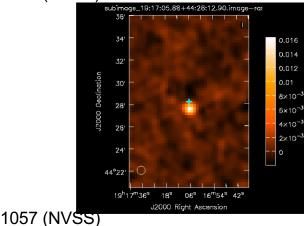
12°24' 12°24' 12°24' 12°3 18^s 06^s J2000 Right Ascension

HD 52265 (NVSS)

0.016

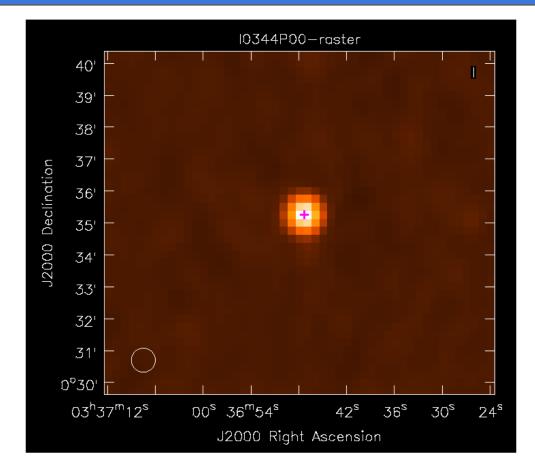
0.014

0.012


0.01

8×10⁻

6×10


4×10⁻

2×10⁻

HR 1099

