Wideband Prototype Front-end for the ngVLA

Development Report

Hamdi Mani, Sander Weinreb

NATIONAL RADIO SCIENCE MEETING University of Colorado at Boulder 01/09/2019

Motivation

- Develop a compact and highly integrated front-end
- Reduce the power consumption of the cryogenics
- Build a reliable large vacuum window for the low frequency feed
- Evaluate the thermal design of the cryostat
- Test different noise calibration schemes
- Reduce the cost of manufacturing the cryogenic package
- Build a package that is easy to assemble and maintain
- Evaluate wideband feeds and cryogenic LNAs to maximize the figure of merit: Efficiency / Noise

Package 4 receivers covering 1.2-116GHz in ONE Cryostat

Wideband front end Concept:

4 receivers in <u>ONE</u> cryostat , cooled with <u>ONE</u> cryocooler

Cylinder "Tee" for the Low frequency feed

ISO 400 Cylinder OD = 16in Thickness: ¼ in

ISO 160Cylinder OD = 6in Thickness: 0.188 in

Material: 6061–T6 Aluminum

Advantages of using rolled and welded Aluminum (instead of stainless steel):

- Large cylinders can be made cheaply
- Complex shapes can be made by welding aluminum parts
- lower material cost
- lighter weight (1/3rd of stainless steel)
- faster machining (10x faster)
- low carbon and hydrogen outgassing
- Stainless steel flanges can be explosion bonded to Aluminum
- Proven technology: used extensively to build UHV chambers (no risk associated with this technology)

A square shaped side cryostat is attached to the cylinder "Tee" to host the higher frequency systems

Window requirements:

A vacuum tight but Microwave transparent window

14mil Mylar Window Assembly

2in deflection form top surface Of window Ring

The cryocooler: Sumitomo RDK-101D with the CAN-11C compressor : lowest power consumption GM Cryocooler in the market

1st stage Load Power [W] 2nd stage Load Power [W] 1st Stage Temp [k] 2nd Stage Temp [K] Pressure [Torr] Pin[W] → 2nd Stage Temp [K] → Pin[W] 2.5W heat Lift @ 20K 1.70E-07 1200 1290 0 0.1 28.13 3.9 1.70E-07 1212 160 0.15 28.3 4.2 1.90E-07 1203 0 1280 🔁 140 0.2 28.39 4.5 0 2.80E-07 1209 1270 Poly 1260 D 28.5 0 0.3 5.04 1.70E-07 1213 Competes with the CTI-350 **∑**¹²⁰ 0 0.5 29.45 5.9 1.40E-05 1210 0 1 30.6 7.8 3.30E-05 1210 2nd Stage Temp [09 00 40 0 1.5 31.4 9.3 8.80E-05 1228 1250 0 2 32.4 11.9 7.00E-05 1229 1240 0 2.5 32.5 16.2 9.00E-05 1239 Idm 5 30.2 53 9.00E-05 1260 0 1230 0 10 30.25 137 9.00E-05 1280 1220 Ö 0 1.70E-07 1200 0 29.8 3.025 4.00E-07 1216 1210 3 1 2 0 31.75 3.1 3.50E-07 1216 1200 H 20 5 0 39.1 3.1 4.30E-07 1220 10 0 60.68 3.4 1.20E-07 1274 1190 0 10 2 4 6 8 ÷ 2nd stage Load Power [W] @ 0W 1st stage load 1st stage temp versus load and a --- Pin[W] 2nd stage temp versus load Y Power (1st Stage Temp [k]) Log. (1st Stage Temp [k]) 70 1280 10W heat Lift @ 60K Cold head ←2nd Stage Temp [K] ← Pin[W] 1290 20 1270 60 15W heat Lift @ 70K 1280 코 1260 18 [¥] 50 40 1270 pi 1260 U 1250 16 **Ξ**14 1240 +du 12 1st Stage 05 30 0L 1230 1250 PC. 1220 10 1240 Stage Compr 1210 1230 8 10 1220 Ö 1200 2nd 6 1210 2 0 1190 TW heat Lift @ 8K Pin[W] 2 0 3 4 5 6 8 9 10 1 1200 Ä 2 1st stage Load Power [W] @ 0W 2nd stage load 0 1190 1 2 3 5 0 2nd stage Load Power [W] @ 0W 1st stage load

<u>Phase 1 of the development:</u> Build and test the low frequency front end

The prototype QRFH feed

Developed at Caltech based on Ahmed Akgiray's Thesis

Advantages of QRFH Feeds:

- Wide bandwidth
- Constant beam width with frequency
- Constant phase center with frequency
- Low cross pol
- Easy to manufacture (CNC machining)
- "Coolable" as it is made of thick metal

Support structure: $4 \ge G10$ Tubes Length: 10in $OD = \frac{3}{4}$ " Wall Thickness: 1/8in Bandwidth: 1.2-4.2 GHz Half Angle: 58 degrees Diameter : 15.27 in Length: 12.25 in Wall Thickness: 0.19 in Total Area : 0.707 m² Material: 6061 Aluminum Total Mass: Finish: Gold plated

Expected conductive heat load through the 4 G10 tubes: 0.3692 W

Measured S Parameters of Feed

- One polarization on Port 1; other on Port 2.
- Return loss of both ports averages to 15 dB form 1.2 to 4.2 GHz. This is excellent and is what what is expected.
- Cross coupling is less than 34 dB which shows excellent symmetry of fins and low capacitance between coaxial probe.

Thermal Design and implementation

Critical factors affecting the thermal design:

- Feed to cryocooler connections: the heat straps!
- Radiative heat load coming from the large window
- Radiative heat load from the warm walls of the cryostat

Feed Connected to the 1st stage of the Cryocooler

<u>Heat strap:</u> Length:13.5" Width:4" Thickness: 1/8" Material: OFHC, Copper 101 Shape: Z- bracket (to absorb contraction during cooling) Finish: Polished and covered with 30 Layers of MLI 2mil thick Indium used as thermal gasket to reduce contact thermal resistance

Thermal resistance at 60K: 0.6K / W (measure based on 6K temperature drop across heat strap at 10W heat load)

Total Area : 0.707 m² Radiative heat : ~ 325W (~50mW / cm²)

21 Layers of 2 mil thick Teflon sheets separated by A thermal insulator (net)

30 Layers of MLI Covering the feed and electronics

Surface Emissivity < 0.1 Should be achievable with Polished and plated Aluminum <u>Measured</u> Performance of the cryogenic packaging and thermal Design

Measured temperature of LNA = 10KMeasured temperature of top plate of feed = 77K.

Temperature at the 1st stage of the Cryocooler: 60K \rightarrow 10 W of heat load on 1st stage Temperature at the 2nd stage of the Cryocooler: 7K \rightarrow 1 W of heat load on 2nd stage

Temperature at the bottom plate of the feed: $66K \rightarrow$ heat strap thermal resistance: 6k / 10wTemperature at the top plate of the feed: $77K \rightarrow$ thermal resistance of the feed: 11K / 10W

Temperature at the LNA (far end of the heat strap connecting the LNA to the 2^{nd} stage):10K \rightarrow Thermal resistance of heat strap: 3k/W

Cryogenic LNA and its connection to the feed

1000 1500

Frequency (MHz)

0.25dB Loss in the cable at 40K, will contribute 2.7K to the noise of the LNA -0.3

Output spectrum of the front end recorded in Phoenix:

Summary of what has been achieved

- A prototype wideband receiver for the ngVLA low frequency band has been designed, built and is being tested: We have a concept on the bench!
- The mechanical and thermal design worked well: The feed cooled to <80K and a cryogenic LNA was cooled to 10K using one single low power cryocooler
- A large vacuum tight window has been built and successfully tested for 1.5 years
- The cryostat package is: light weight, low cost, easy to assemble and to maintain and is suitable to mass production

Areas of improvements and next steps

- Perform better Y-factor measurement of the current system in a radio quite zone
- Find out the noise contributions of every component of the system: Loss of window, thermal filter, coaxial line, Feed, noise coupler...
- Try to reduce the 10W heat load on the 1st stage: better shielding and lower surface emissivity
- Use a better LNA: lower noise and power dissipation, state of the art LNAs at Caltech achieve 2K over The band at < 20mW power dissipation
- Install a cone around the window of the cryostat to reduce back lobe.
- Explore variable speed compressors and cryocoolers to further reduce power consumption
- Development of cryogenic LNAs operating at 60-80K ambient temperature with 2-3K noise temp This is doable with current HEMT transistor technology and careful design of input matching network This LNA will allow direct connection to the feed and "freeing" the 2nd stage of the cooler entirely to Cool the high frequency systems
- The big dream: A room temperature feed + Room temperature electronics operating over a wide Bandwidth (1-4GHz) with good sensitivity (<20K Tsys), saving a lot of cost and complexity.