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ngVLA Correlator/Beamformer Key Requirements

• 263 dual-polarization antennas 

• 20 GHz (per pol’n) instantaneous bandwidth for synthesis imaging

• Beamforming:
• 10 pulsar timing beams
• 10 pulsar search beams
• 5 VLBI beams

• 28 GHz (per pol’n) aggregate bandwidth (simultaneous observing modes)

• Maximum baseline length of 10,000 km
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Frequency Slice Architecture -- Overview

• SKA1 Mid has 6 different Bands at 3 different sample rates

• Original design had full sub-arraying flexibility (anything in any sub-
array) and many different FPGA designs to handle all of the Bands

• Frequency Slice Architecture, proposed to SKAO in early 2017:
• Provides full bandwidth correlation/beamforming ability, but not 

everything at the same time and not full sub-array independence 
• Vastly reduced FPGA design effort
• Dropped power and hardware by ~2X
• Significant cost savings

• Accepted by SKAO and incorporated into SKA1 design baseline
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Frequency Slice Architecture -- Overview

• In the “VCC”, split each digitized Band into 10/9 oversampled, 
equally-spaced, ~200 MHz “Frequency Slices”

• Process each Frequency Slice in a “Frequency Slice Processor” 
(FSP).  Each (of 26) FSPs can do 1 thing (for SKA1 Mid):

a. Correlation for imaging, w/ or w/o zoom, 16k channels
b. Pulsar Search Beamforming (on tunable 300 MHz)
c. Pulsar Timing Beamforming
d. VLBI beamforming incl. 1k channel correlation for tied-array 

calibration solutions
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SKA1 Mid.CBF Frequency Slice/processing resources diagram



Frequency Slice Architecture -- Overview
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TALON-DX FPGA Board and TALON LRU

• Single Stratix-10 (14 nm FinFET) SX280 Intel FPGA on each “TALON-
DX” board

• Embedded ARM processor in FPGA / 1 Gb Ethernet and for M&C

• 4 x DDR4 DIMMs (Single Rank: 2666 MT/s, Dual Rank: 2400 MT/s)

• 5 x 12 TRx FCI LEAP MBOs; 26G per fiber

• 2 x QSFP28 100G cages

• Air-cooled with stacked-fin heatsink

• 2 x TALON-DX boards in each 2U TALON LRU
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2U air-cooled TALON LRU prototype under test.  Copper stacked-fin 
heatsinks would be replaced by liquid cooling plates for a 1U solution.



Trident-CBF Design

• Reference design for ngVLA CBF

• Leverages ~60 PYs of work on the SKA1 Mid.CBF

• FSA and TALON technology very well suited to the task, but ~2025 
construction would at least use the next technology node

• High level design:
• 3 “tridents” of 10 GHz/pol’n each
• VCC-Part in each trident produces 50 Frequency Slices, 

processed in 50 FSPs – 150 FSPs in total
• Each FSP can be one of: correlation for imaging, or 4 types of 

beamforming “Function Modes” 
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Trident-CBF Design
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Trident-CBF Design

• The “VCC-UNIT” is a convenient collection of TALON LRUs to 
allow for passive fiber routing of one Frequency Slice for 11 
antennas in it, to a single output 12-fiber MTP connector

• The “FSP-UNIT” accepts 26 x 11-fiber MTPs into (for ngVLA) its 26 
FPGAs

• The number of FPGAs in the FSP-UNIT can be increased if 
needed, for more antennas (up to 484) or for more processing 
horsepower
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Trident-CBF Design -- Simplified Architecture
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Trident-CBF Design -- VCC-Unit
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Trident-CBF Design -- FSP-Unit
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Trident-CBF Design -- Rack Layout
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Trident-CBF Design -- Cost Model
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Trident-CBF Design -- Cost and Power

• Current FPGA Technology:
• $130 Million (2018 USD)

• $90M Hardware Costs
• $17M Labor
• $13M Contingency

• Power Estimate: 1500 kW

• Next Generation FPGA Technology (Estimated):
• $108M-$121M respectively (2018 USD)
• 900 – 1200 kW
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