Trident Frequency Slice Architecture Correlator/Beamformer Reference Design for ngVLA

Mike Pleasance, Brent Carlson and the SKA1 Mid.CBF Team Herzberg Astronomy and Astrophysics – National Research Council Canada

USNC-URSI National Radio Science Meeting, Boulder, Colorado January 9, 2019

National Research Conseil national de Council Canada recherches Canada

Outline

- ngVLA Correlator/Beamformer Requirements
- "Frequency Slice Architecture" Overview
- TALON-DX FPGA Board and TALON LRU
- Trident-CBF ngVLA CBF Design

ngVLA Correlator/Beamformer Key Requirements

- 263 dual-polarization antennas
- 20 GHz (per pol'n) instantaneous bandwidth for synthesis imaging
- Beamforming:
 - 10 pulsar timing beams
 - 10 pulsar search beams
 - 5 VLBI beams
- 28 GHz (per pol'n) aggregate bandwidth (simultaneous observing modes)
- Maximum baseline length of 10,000 km

Frequency Slice Architecture -- Overview

- SKA1 Mid has 6 different Bands at 3 different sample rates
- Original design had full sub-arraying flexibility (anything in any subarray) and many different FPGA designs to handle all of the Bands
- Frequency Slice Architecture, proposed to SKAO in early 2017:
 - Provides full bandwidth correlation/beamforming ability, but not everything at the same time and not *full* sub-array independence
 - Vastly reduced FPGA design effort
 - Dropped power and hardware by ~2X
 - Significant cost savings
- Accepted by SKAO and incorporated into SKA1 design baseline

Frequency Slice Architecture -- Overview

- In the "VCC", split each digitized Band into 10/9 oversampled, equally-spaced, ~200 MHz "Frequency Slices"
- Process each Frequency Slice in a "Frequency Slice Processor" (FSP). Each (of 26) FSPs can do 1 thing (for SKA1 Mid):
 - a. Correlation for imaging, w/ or w/o zoom, 16k channels
 - b. Pulsar Search Beamforming (on tunable 300 MHz)
 - c. Pulsar Timing Beamforming
 - d. VLBI beamforming incl. 1k channel correlation for tied-array calibration solutions

SKA1 Mid.CBF Frequency Slice/processing resources diagram

6

Frequency Slice Architecture -- Overview

NRC.CNRC

TALON-DX FPGA Board and TALON LRU

- Single Stratix-10 (14 nm FinFET) SX280 Intel FPGA on each "TALON-DX" board
- Embedded ARM processor in FPGA / 1 Gb Ethernet and for M&C
- 4 x DDR4 DIMMs (Single Rank: 2666 MT/s, Dual Rank: 2400 MT/s)
- 5 x 12 TRx FCI LEAP MBOs; 26G per fiber
- 2 x QSFP28 100G cages
- Air-cooled with stacked-fin heatsink
- 2 x TALON-DX boards in each 2U TALON LRU

NCCNCC

NRC CNRC

2U air-cooled TALON LRU prototype under test. Copper stacked-fin heatsinks would be replaced by liquid cooling plates for a 1U solution.

NRC CNRC

Trident-CBF Design

- Reference design for ngVLA CBF
- Leverages ~60 PYs of work on the SKA1 Mid.CBF
- FSA and TALON technology very well suited to the task, but ~2025 construction would at least use the next technology node
- High level design:
 - 3 "tridents" of 10 GHz/pol'n each
 - VCC-Part in each trident produces 50 Frequency Slices, processed in 50 FSPs – 150 FSPs in total
 - Each FSP can be one of: correlation for imaging, or 4 types of beamforming "Function Modes"

Trident-CBF Design

Trident-CBF Design

- The "VCC-UNIT" is a convenient collection of TALON LRUs to allow for passive fiber routing of one Frequency Slice for 11 antennas in it, to a single output 12-fiber MTP connector
- The "FSP-UNIT" accepts 26 x 11-fiber MTPs into (for ngVLA) its 26 FPGAs
- The number of FPGAs in the FSP-UNIT can be increased if needed, for more antennas (up to 484) or for more processing horsepower

Trident-CBF Design -- Simplified Architecture

Trident-CBF Design -- VCC-Unit

Trident-CBF Design -- FSP-Unit

Trident-CBF Design -- Rack Layout

NRC-CNRC

Trident-CBF Design -- Cost Model

		Labour PDs															
	WBS	PM:Sr	PM:Int	Eng:Sr	Eng:Int	Eng:Jr	Sci:Sr	Sci:Int	Con	Admin				Non-Labour			
WBS Category Definition	Category	\$1,100	\$900	\$1,000	\$900	\$750	\$1,050	\$850	\$950	\$500	Total PDs	Labour PD%	Labour Cost	Cost	Travel Cost	Contingency	TOTAL COST
Management	MGT	825	i 0	660	550	0	0	0	209	825	3069	16.0%	\$2,673,550	\$0	\$261,000	\$293,455	\$3,228,005
System Engineering	SE	0	0	917	766	0	0	0	0	0	1683	8.8%	\$1,606,367	\$0	\$220,400	\$182,677	\$2,009,443
Product Design	PD	0	0	0	0	0	0	0	0	0	0	0.0%	\$0	\$0	\$0	\$0	\$0
Hardware Development	HW	0	0	0	606	0	0	0	0	0	606	3.2%	\$545,738	\$449,893	\$69,600	\$228,319	\$1,293,550
Firmware Development	FW	0	0	0	4937	0	0	0	0	0	4937	25.8%	\$4,443,683	\$360,000	\$208,800	\$1,282,535	\$6,295,018
Software Development	SW	0	0	0	3986	0	0	0	0	0	3986	20.8%	\$3,587,704	\$240,000	\$139,200	\$731,197	\$4,698,101
Sub-System Integration Infrastructure	SII	0	0	88	461	0	0	0	0	0	549	2.9%	\$502,975	\$291,668	\$34,400	\$118,332	\$947,376
Integration & Test (a.k.a. Development Testing)	1&T	0	0	193	1348	0	0	99	0	0	1639	8.6%	\$1,489,400	\$0	\$413,800	\$420,456	\$2,323,656
Acceptance Test for Verification	AT	0	0	88	807	0	0	0	0	0	895	4.7%	\$814,000	\$116,006	\$116,000	\$83,680	\$1,129,686
Shipping and Installation	S&I	0	0	0	128	0	0	0	0	293	422	2.2%	\$262,167	\$160,000	\$60,200	\$42,589	\$524,956
Procurement and Production Hardware Cost	PHW	0	110	0	0	231	0	0	0	110	451	2.4%	\$327,250	\$91,763,078	\$46,400	\$9,205,200	\$101,341,928
Warranty	WTY	41	. 6	102	692	12	0	5	10	61	929	4.8%	\$828,392	\$4,669,032	\$83,710	\$631,618	\$6,212,752
TOTALS		866	116	2047	14282	243	0	104	219	1290	19166	100.0%	\$17,081,224	\$98,049,677	\$1,653,510	\$13,220,059	\$130,004,469

Figure 13-1 Trident-CBF cost summary, based on the SKA1 Mid.CBF cost model, 2018 dollars. This is for 6 TALON LRUs per VCC-UNIT, 24 VCC-UNITs, and 13 TALON LRUs per FSP-UNIT.

		Labour PDs															
	WBS	PM:Sr	PM:Int	Eng:Sr	Eng:Int	Eng:Jr	Sci:Sr	Sci:Int	Con	Admin				Non-Labour			
WBS Category Definition	Category	\$1,100	\$900	\$1,000	\$900	\$750	\$1,050	\$850	\$950	\$500	Total PDs	Labour PD%	Labour Cost	Cost	Travel Cost	Contingency	TOTAL COST
Management	MGT	825	0	660	550	0	0	0	209	825	3069	16.0%	\$2,673,550	\$0	\$261,000	\$293,455	\$3,228,005
System Engineering	SE	0	0	917	766	0	0	0	0	0	1683	8.8%	\$1,606,367	\$0	\$220,400	\$182,677	\$2,009,443
Product Design	PD	0	0	0	0	0	0	0	0	0	0	0.0%	\$0	\$0	\$0	\$0	\$0
Hardware Development	HW	0	0	0	606	0	0	0	0	0	606	3.2%	\$545,738	\$449,893	\$69,600	\$228,319	\$1,293,550
Firmware Development	FW	0	0	0	4937	0	0	0	0	0	4937	25.8%	\$4,443,683	\$360,000	\$208,800	\$1,282,535	\$6,295,018
Software Development	SW	0	0	0	3986	0	0	0	0	0	3986	20.8%	\$3,587,704	\$240,000	\$139,200	\$731,197	\$4,698,101
Sub-System Integration Infrastructure	SII	0	0	88	461	0	0	0	0	0	549	2.9%	\$502,975	\$291,668	\$34,400	\$118,332	\$947,376
Integration & Test (a.k.a. Development Testing)	1&T	0	0	193	1348	0	0	99	0	0	1639	8.6%	\$1,489,400	\$0	\$413,800	\$420,456	\$2,323,656
Acceptance Test for Verification	AT	0	0	88	807	0	0	0	0	0	895	4.7%	\$814,000	\$116,006	\$116,000	\$83,680	\$1,129,686
Shipping and Installation	S&I	0	0	0	128	0	0	0	0	293	422	2.2%	\$262,167	\$160,000	\$60,200	\$42,589	\$524,956
Procurement and Production Hardware Cost	PHW	0	110	0	0	231	0	0	0	110	451	2.4%	\$327,250	\$96,647,568	\$46,400	\$9,693,649	\$106,714,867
Warranty	WTY	41	6	102	692	12	0	5	10	61	929	4.8%	\$828,392	\$4,913,257	\$83,710	\$656,040	\$6,481,399
TOTALS		866	116	2047	14282	243	0	104	219	1290	19166	100.0%	\$17,081,224	\$103,178,392	\$1,653,510	\$13,732,930	\$135,646,056

Figure 13-2 Trident-CBF cost summary (2018 dollars) for the 5 TALON LRUs per VCC-UNIT, 28 VCC-UNITs, and 14 TALON LRUs per FSP-UNIT option mentioned as a note to Figure 5-1.

Trident-CBF Design -- Cost and Power

- Current FPGA Technology:
 - \$130 Million (2018 USD)
 - \$90M Hardware Costs
 - \$17M Labor
 - \$13M Contingency
 - Power Estimate: 1500 kW

1% 10% 13% - Labour Cost 76% - Labour Cost . Non-Labour . Travel . Contingency

Cost Breakdown

- Next Generation FPGA Technology (Estimated):
 - \$108M-\$121M respectively (2018 USD)
 - 900 1200 kW

Canada Canada

Thank you

Mike Pleasance

Research Council Officer—Digital Signal Processing Tel: 250-497-2346 Michael.Pleasance@nrc-cnrc.gc.ca www.nrc-cnrc.gc.ca

