SPT-3G:

The Third Generation Camera and Survey for the South Pole Telescope

Joaquin Vieira University of Illinois URSI 05 Jan 2017

SPT

The South Pole Telescope

- 10 meter off-axis sub/mm telescope
- located at the geographic south pole
- 1 deg² field of view
- ~1' beams
- optimized for fine scale anisotropy measurements

SPT-SZ Camera (1st Generation):

- 2007 2011
- 960 pixel mm camera, 1 deg² FOV
- 1.4, 2.0, and 3.0 mm
- completed 2500 deg²
- 18 μ K-arcmin depth, ~1 mJy

SPT-pol Camera (2nd Generation):

- 2012 2015
- 1600 detector mm camera, 1 deg² FOV
- 2 and 3 mm + polarization
- currently surveying 500 deg²
- 4.5 µK-arcmin depth

SPT-3G Camera (3rd Generation):

- 2016 2020
- 15k detector mm camera, 2.4 deg² FOV
- 1.4, 2, 3 mm + polarization
- planned 2500 deg² x8 deeper
- 2.5 µK-arcmin depth

SPT Science

Cosmic Microwave Background:

- CMB power spectrum: Story et al. 2013 ApJ, George et al. 2014
- CMB Lensing: van Engelen *et al.* 2012 ApJ; Holder *et al.* 2013 ApJ
- Epoch of Reionization: Zahn et al. 2012 ApJ
- · CMB Polarization: Hanson et al. 2013 PRL

Galaxy Clusters:

- SZ cluster catalog: Reichardt et al. 2013 ApJ
- Cluster Cosmology: Benson et al. 2013 ApJ
- Cluster Astrophysics: McDonald et al. 2013 ApJ

Galaxy Evolution:

- Catalog of mm sources: Mocanu et al. 2013 ApJ
- High-z strongly-lensed starforming galaxies: Vieira et al. 2013 Nature

2500 deg² SPT-SZ Survey

		SPT-SZ	2008 → 2011	Deep Field	2008 → 2013	SPTpol	2012 → 2014	SPT3G	2015 → 2017
band [mm]	FWHM [']	uК _{смв} - arcmin	RMS mJy/beam						
3	1.7	42	2	6	0.3	15	0.7	4.2	0.2
2	1.2	18	1.3	5	0.3	6	0.5	2.5	0.2
1.4	1	85	6.8	35	3			4	0.4
area [deg²]		2500		200		500		2500	

SPT-3G Mapping Speed

~20x Increase in Mapping Speed Relative to SPTpol:

- 1) Multi-chroic pixels
 - 3-bands: 95, 150, 220 GHz
- 2) Increased field of view
 - 3x increase in area (2.8 deg²)
 - use large aperture (720 mm diameter), low-loss alumina lenses
- 3) Reduce internal loading
 - -Reduce from 30 K to 10 K
 - -Zotefoam window supported by
 - ~50 K alumina lens

Experiment	N _{bolo}	NET_T	Speed_T	NET_P	Speed_P
		$(\mu K\sqrt{s})$		$(\mu K\sqrt{s})$	
SPT-SZ	960	22	1.0	-	-
SPT-POL	1,536	14	2.5	20	1.0
SPT-3G	16,260	3.4	43	4.8	17

Amundsen-Scott South Pole Station at the geographic south pole on the Antarctic Plateau 2,835 m above sea level

observing the beginning of the universe from the bottom of the world

Recent South Pole CMB experiments at NSF's Amundsen-Scott Research Station

10m South Pole Telescope

Photo credit Cynthia Chiang

South Pole Telescope

Majority of the SPT sources are high redshift AGN with the jets pointed at us. They have radio, xray, and sometimes gamma-ray counterparts.

Galaxy Clusters detected with the Sunyaev-Zeldovich effect

"Shadows" in the cosmic microwave background from inverse compton scattering

Use 'em to measure Dark Energy

Probes the 2nd half of the history of the universe

high redshift strongly lensed dusty starforming galaxies

Use gravitational lensing as a cosmic telescope to study the first galaxies and directly image dark matter

The angular power spectrum of the CMB

Brief History of the Universe

Evolution of bolometer arrays

multi-chroic

Detector sensitivity has been limited by photon shot noise for last ~15 years.

Further improvements are made only by making *more detectors!*

The SPT-3G Camera

1 m

Stage 3 Instruments: condensed matter experiment to do *ultra-*high energy physics

17

SPT-3G focal plane

0.5 m

SPT-3G detector module

Detector fabrication at Argonne National Lab Lenslet array fabrication at Illinois Detector module assembly at Fermilab Final integration at Pole

State of the Art Bolometers circa 2015

Micro-machined at Argonne National Laboratory

antenna-coupled **multi-chroic** polarization sensitive TES bolometers typical camera consists of ~2500 pixels (x2 polarizations x3 colors = 15k detectors) used in SPT-3G

One single bolometer element seen in a scanning electron microscope

Lenslet arrays for SPT-3G designed and fabricated at Illinois

Cross section view

10 mil expanded teflon 5+5 mil loaded teflon

ePTFE R03035 R03006 bottom

top

this is our press for forming teflon

Lenslet arrays for SPT-3G designed and fabricated at Illinois

multiple-layer anti-reflection coating laser machined for stress relief from thermal contraction

5 mm

exploded view

Cryostat design and commissioning at Fermilab

1 m

large format anti-reflection coating at Illinois

CMB polarization: the next frontier for lensing & inflation

CMB polarization: the next frontier for lensing & inflation

CMB polarization: the next frontier for lensing & inflation

CMB polarization: the next frontier for lensing & inflation

CMB lensing

Gravitational Lensing of the CMB

- The CMB damping tail is sensitive to structure along the line of sight through gravitational lensing
- The CMB lensing redshift kernel peaks at 1<z<3
- Basically gives a measure of σ_8 at $z\sim2$
- SPT has produced a map of the line-of-sight mean density with S/N~1 per square degree
- This can be cross correlated with catalogs of galaxies to directly measure the bias or mean halo mass in which the objects reside

Van Engelen *et al.* 2012 ApJ Bleem *et al.* 2012 ApJ Holder *et al.* 2013 ApJ

CMB polarization: the next frontier for lensing & inflation

The Cosmic Neutrino Background

- Neutrinos decoupled from baryons ~1s after the end of inflation at ~1MeV and today they are ~10⁻⁴ eV (T_v≈2K)
- The total number of cosmic v's is comparable to CMB γ's and the energy density of v's is comparable to the baryons
- The effect of v's on the growth of structure is different than baryons and cold dark matter and can be seen through their imprint on the CMB

The Cosmic Neutrino Background

- Currently, CMB experiments have detected the CvB at ~10 σ with N_{eff} = 3.15±0.23
- Cosmological measurements of v's are highly complementary to the laboratory-based experimental effort.
- The cleanest astrophysical probe of neutrino mass is through gravitational lensing of the CMB

The cosmic neutrino background and mass of the neutrino

Σm_{ν}

Σm_v is relevant to some of the most interesting open issues in neutrino and particle physics:

- mass hierarchy
- Majorana particles
- lepton number violation
- CP violation
- matter-anti-matter asymmetry

150 GHz SPT-SZ map

- For current CMB experiments, the dominant population of point sources are FSRQs
 - ~2% of the SPT sources are strongly lensed dusty starforming galaxies at 2<z<7

 \bullet

 \bullet

- For CMB-S4, the majority of sources will be luminous unlensed dusty sources
- Any configuration of CMB-S4 will be confusion limited for point sources at 220 GHz
- We should think about synergies with other extragalactic surveys, e.g. LSST
 - The time domain has been opened up for mm-wave transients.

CMB Point Sources by flux

work by Illinois undergrad David Booke

The mm transient sky

SPTpol Whitehorn et al. 2016

52

CO redshift searches with ALMA Band 3

Most distant astronomical object

$N_{SMG}(>z)$ v. year

CMB surveys have discovered 70% of SMGs at z>4

The early Universe as a laboratory for high energy physics

80 yrs old

today

middle age

1 day old

inception

Funded by

Conclusions

- CMB experiments have made huge impacts in the field of cosmology and will continue to do so into the next decade.
- In addition to cosmology, CMB experiments are also making important measurements and discoveries in astrophysics and ultra high energy physics.
- Increases in superconducting detector arrays are the enabling technology.
- SPT-3G is currently deploying and will be on the sky in the next few weeks.
- The field is coming together to plan CMB-S4.
- CMB measurements in the next 5-10 years will constrain inflation, measure the mass of the neutrino and continue to become more useful to probe the cosmological and astrophysical evolution of the Universe.

