

NATIONAL RADIO ASTRONOMY OBSERVATORY

TOWARDS OPTICS DESIGN FOR THE ngVLA

Sivasankaran Srikanth, CDL, NRAO Charlottesville

CONTENTS OF TALK

- I. INTRODUCTION
- 2. CLASSICAL Vs. SHAPED
- 3. SYMMETRIC/ASYMMETRIC ANTENNA
- 4. VARIANCE OF DUAL-OFFSET ANTENNA
- 5. OPTICS DESIGN CONCEPTS
- 6. CONCLUSIONS

INTRODUCTION

Sensitivity 10x VLA (35 GHz) ~300 antennas-18 m diameter; Diameters 12-25m considered 1.2-116 GHz 1.2-10.8 GHz (2 or 3 bands; $h_a = 0.65$) 11-50 GHz (3 bands; $h_a = 0.75$) 70-116 GHz (1 band; $h_a = 0.4, 0.3$) Dual-offset reflector antenna Shaping to optimize G/T_{sys}

VLA (SHAPED) & CASSEGRAIN EQUIVALENT

January 2017

SUBREFLECTOR SCATTERED BEAM

January 2017

VLBA (SHAPED) & CASSEGRAIN EQUIVALENT

January 2017

SUBREFLECTOR SCATTERED BEAM (1.5 GHz)

 Θ edge = 67.92°

SYMMETRIC PLANE

ASYMMETRIC PLANE

More uniform illumination and faster roll-off

DISADVANTAGES OF SHAPING

- I. FREQUENCY DEPENDENT
- 2. LIMITED FIELD OF VIEW
- 3. LOSS IN GAIN FROM PRIME FOCUS
- 4. RELATIVELY LARGER FEED HORNS (MORE SEVERE ILLUMINATION TAPER)

DUAL-OFFSET ANTENNA (GBT)

January 2017

National Radio Science Meeting – Boulder, CO

versities Inc

UNBLOCKED APETUTRE Vs SYMMETRIC

ADVANTAGES: Higher aperture efficiency 3 to 5% Lower side lobes ~15 dB Lower T_{antenna} ~3K Minimized standing waves ~25 dB Larger real estate

DISADVANTAGES: Complex structure Poorer polarization performance – prime focus Higher scan loss Requires turret rotation/translation

BEAM OF THE EVLA (1.425 GHz) & GBT (1.4 GHz)

R. Perley et al., "Testing of theEVLA L-Band Feed", EVLA Memo 85

APERTURE η AND SYSTEM TEMPERATURE

January 2017

National Radio Science Meeting – Boulder, CO

Inversities Inc

DUAL-OFFSET CASSEGRAIN, GREGORIAN ANTENNA

January 2017

FORWARD SPILLOVER – PAST SUBRFLECTOR

S. Srikanth, "Spillover noise temperature calculations for the Green Bank clear aperture antenna," GBT Memo #16, October 4, 1989.

NRAO NSF

National Radio Science Meeting – Boulder, CO

REAR SPILLOVER – LOW CASS., HIGH GREG.

90° 45° 10°

MAIN REFLECTOR ORIENTATION WITH RESPECT TO CROUND

Inversities Inc

National Radio Science Meeting – Boulder, CO

SUBREFLECTOR SCATTERED PATTERN

National Radio Science Meeting – Boulder, CO

DIFFRACTION LOSS

Lateral extent of the transition region of edge diffracted field $\Delta \rho = \sqrt{\lambda} / \pi Sa / 1 \pm Sa / |\rho r| |$ S_a – distance between edges of subreflector and main reflector ρ_r – subreflector edge to prime focus distance $\Delta \rho_{\text{gregorian}} > \Delta \rho_{\text{cassegrain}}$

Spillover past main reflector for -10 dB taper $\Delta p=0.09\Delta \rho a/D$ $\Delta \rho_a$ – average of $\Delta \rho$ of the two edges D – diameter of main reflector

 P. Kildal and J. Stamnes "Asymptotic transition region theory for edge diffraction, Part I and Part II," IEEE Trans. Antennas and Propagation, Sept. 1990. AP-S Digest pp. 1350-1373
Private commn. P. Kildal Sept. 19, 1990.

TOTAL SPILLOVER

Total Spillover 1.4 GHz

National Radio Science Meeting – Boulder, CO

25m MAIN; F=15m; θ_{sub} =30°

National Radio Science Meeting – Boulder, CO

25m MAIN; F=15m; θ_{sub} =36°

January 2017

National Radio Science Meeting – Boulder, CO

ociated Universities Inc.

25m MAIN; F=15m; θ_{sub} =40°

January 2017

National Radio Science Meeting – Boulder, CO

iversities Inc.

COMPACT FEED HORN – 1.2 to 2.4 GHz

January 2017

LINEAR TAPER FEED HORN – II to 18 GHz

National Radio Science Meeting – Boulder, CO

GREGORIAN SUBREFLECTOR SCATTERED PATTERN

National Radio Science Meeting – Boulder, CO

CASSEGRAIN SUBREFLECTOR SCATTERED PATTERN

National Radio Science Meeting – Boulder, CO

ANTENNA BEAMS AT 1.6 GHz, θsub=30°

30 degrees Gregorian

GREGORIAN

Blockage loss = 0% η_a = 64% Xpol= -45 dB

CASSEGRAIN

 $R_{sub}^{2}/R_{main}^{2} = 1.3\%$ Blockage loss = 2.4% $\eta_{a}^{2} = 63\%$ Xpol= -42 dB

January 2017

ANTENNA BEAMS AT 1.6 GHz, θ sub=36°

36 degrees Gregorian

CASSEGRAIN

 η_{a} = 61.4% Xpol= -39 dB

 $R_{sub}^2/R_{main}^2 = 1.9\%$ Blockage loss = 2.6%

GREGORIAN

Blockage loss = 0% η_a = 62% Xpol=-41 dB

NRAO NSF

niversities Inc.

January 2017

ANTENNA BEAMS AT I.6 GHz, θsub=30°

30 degrees Subreflector; 45°-plane

30 degrees Subreflector; symmetric plane

National Radio Science Meeting – Boulder, CO

CONCLUSIONS

Gregorian Antenna: Smaller subreflector Marginally higher gain Lower crosspolarization Larger extent of diffracted fields Requires ground blocking shield – baseline problems

Cassegrain Antenna: Blockage Lower spillover Smaller envelope Large real estate

Larger subreflector Opening Angle: Smaller feed horns Feed to reflector distance smaller – Even samller Higher crosspolarization Cassegrain - larger subreflector Gregorian – feed horn points more towards ground

NRAO NSF

GROUND SHIELDS

National Radio Science Meeting – Boulder, CO

versities. Inc.

25m MAIN; F=15m; θ_{sub} =44°

National Radio Science Meeting – Boulder, CO

ociated Jniversities Inc.

18 m MAIN, F=10.8; 2.5 m(10 $λ_{1.2}$) SUB; $θ_{sub}$ =15°

January 2017

18 m MAIN REFLECTOR; 3.2 m (12.8 $\lambda_{1.2}$) SUB; θ_{sub} =15°

January 2017

18 m MAIN REFLECTOR; 2.5, 3.2 m CASS SUBREFLECTOR

January 2017

VLA ANTENNA GEOMETRY

VLBA ANTENNA GEOMETRY

versities Inc.

HYPERBOLA / ELLIPSE PARAMETERS

 $x^{12}/a^{12} - y^{12}/b^{12} = 1$

 $x^{12}/a^{12} + y^{12}/b^{12} = 1$

 $e = \sqrt{a t^2 + b t^2} e^{a t^2 + b t^2} e^{-1}$

 $e = \sqrt{at^2 - bt^2} / \frac{a}{c} \sqrt{at^2 - bt^2} e < 1$

f=2c

CASSEGRAIN TELESCOPE DESIGN PARAMETERS

	DIA Main	F _{Main}	⊖ _{main} ∘	е	f_{hyp}	MAG	Θ _{sub} ο	DIA Sub	FA
VLAeq	25.0	9.2897	67.864	1.2734	7.691	8.3164	9.250	2.350	6.865
				1.2600	7.691	8.6923	8.8518	2.253	6.897
				I.2900 [↑]	7.691	7.8966	9.7397	2.468	6.827↓
VLAeq	25.0	9.2897	67.864	1.2734	7.691	8.3164	9.250	2.350	6.865
				1.2734	7.500	8.3164	9.250	2.291	6.695
				1.2734	7.900	8.3164	9.250	2.413	7.052

National Radio Science Meeting – Boulder, CO

GREGORIAN TELESCOPE DESIGN PARAMETERS

DIA Main	F _{Main}	Y _c	⊖ _{sub} ∘	е	f_{ellip}	MAG	o	DIA Sub	FA
8x 9.7	10.8	9.72	15	0.5278	3.639	3.1649	2.5x2.6		7.659
				0.7600	6.738	7.3333	10.484	2.697	7.802
				0.8000	6.738	9.0000	8.5503↓	2.158↓	7.580↓
25mGreg	25.0	9.2897	67.864	0.7853	6.738	8.3166	9.250	2.350	7.659
				0.7853	6.540	8.3166	9.250	2.281	7.434
				0.7853	6.940 1	8.3166	9.250	2.421 1	7.889

National Radio Science Meeting – Boulder, CO

GREGORIAN TELESCOPE DESIGN PARAMETERS

	DIA Main	F _{Main}	⊖ _{main} ∘	е	f_{ellip}	MAG	Θ _{sub} ο	DIA Sub	FA
25mGreg	25.0	9.2897	67.864	0.7853	6.738	8.3166	9.250	2.350	7.659
				0.7600	6.738	7.3333	10.484	2.697	7.802
				0.8000	6.738	9.0000	8.5503↓	2.158↓	7.580↓
25mGreg	25.0	9.2897	67.864	0.7853	6.738	8.3166	9.250	2.350	7.659
				0.7853	6.540	8.3166	9.250	2.281	7.434
				0.7853	6.940 1	8.3166	9.250	2.421 1	7.889 1

Associated Universities Inc

National Radio Science Meeting – Boulder, CO

CASSEGRAIN TELESCOPE DESIGN PARAMETERS

	DIA Main	F _{Main}	⊖ _{main} ∘	е	f _{hyp}	MAG	Θ _{sub} ο	DIA Sub	FA
VLAeq	25.0	9.2897	67.864	1.2734	7.691	8.3164	9.250	2.350	6.865
	25.0	9.2796	67.922	1.4179	7.691	5.7857	13.300	3.313	6.558
VLBAeq				1.4179	7.416	5.7857	13.300	3.195	6.323
ALMA	12.0	4.8	64.01	1.0526	6.177	20.00	3.6	0.750	5.883
GBT	100	60	39.005	0.528	11.00	3.166	15.0	7.950	15.1

National Radio Science Meeting – Boulder, CO

LINEAR TAPER CORRUGATED HORN

FEED	Freq (GHz)	Taper (dB) @θ _{sub}	θο	DIA	DIA/ λ *	L/λ *	Taper **
EVLA-Ku	12-18	-14@9.25°	10.5°	12.3"	12.5	33.8	-14.0
VLBA	12-15.4	-14@13.25°	14°	8.0"	8.1	16.2	-14.5
SHAO-Ku	12-18	-15.5@13°	13°	8.5″	8.7	19.3	-15.6

January 2017

National Radio Science Meeting – Boulder, CO

ociated Universities Inc

PROFILE TAPER (COMPACT) CORRUGATED HORN

FEED	Freq (GHz)	Taper (dB) @ θ _{sub}	θ _{max}	DIA	DIA/ λ *	L/λ *	Taper (dB)**	Lin. D/λ
EVLA-C	4-8	-13@9.25°	12.0°	22.0"	7.5	22.3	-12.5	12.2
VLBA-C	4-8	-14@13.25°	15.0°	14.0"	4.7	10.6	-13.7	8.1

versities Inc

SCAN LOSS, COMA LOBE

National Radio Science Meeting – Boulder, CO

K-BAND ARRAY RECEIVER ON THE GBT

	HPBW 34"; Beam thro	w 27.4"/	/inch; 0.4	3HPB\	₩ /λ	Χ"	Throw (arcsec)	Throw (HPBW)
	Azimuth beams; 0,1,2-0.63;	3-0.62; 4-0	.59; 5-0.55			0	0	0
	80					3.45	94	2.7
ude (dB)				0 3.4 6.92 10.4	6.9	189	5.5	
Amplit				And	13.9 17.3	10.4	284	8.2
						13.8	378	11.0
-0.1	1000 -0.0500 0.0000 0.0500 Azimuth (deg I 80"	0.1000) 360''	0.1500 540''	0.2000 720''		17.3 32.2λ	473	13.7

National Radio Science Meeting – Boulder, CO

K-BAND ARRAY RECEIVER - LOSS

January 2017

ALMA ANTENNA

INVAC

ALMA ANTENNA CRYOSTAT

Feed dia 14mm (3.2λ) Len 85mm (19.3λ)

Band	d mm	ဓsec °	d/λ	θs/bw	η
1	255	2.48	36.1		
2	255	2.48	67.2		
3	181	1.76	60.4	6.4	0.853
4	181	1.76	86.9		
5	245	2.38	153		
6	245	2.38	198	19.1	0.758
7	100	0.97	108	10.7	0.856

Osec- Incident angle at the secondary Os- telescope beam scan angle $0.1HPBW/\lambda$

SYMMETRIC AND UNBLOCKED ANTENNA BEAMS

January 2017

MEASURED SIDELOBE CONTOURS OF GBT AT 21 CMS

Boothroyd, A. I. et. al., "Accurate galactic 21-cm H1 measurements with the NRAO Green Bank Telescope", Astronomy & Astrophysics 536, A81 (2011)

FORWARD SPILLOVER – CASSEGRAIN SUBRFLECTOR

Fig. 3. Forward Spillover. Casaegrain Subreflector Orientation with Respect to Ground (shaded).

S. Srikanth, "Spillover noise temperature calculations for the Green Bank clear aperture antenna," GBT Memo #16, October 4, 1989. 30 25 20 15

Forward Spillover - Cassegrain subreflector

20 (X) dsT 10 5 0 0 10 20 30 40 50 60 70 80 90 100 Elevation (degrees)

> I.42 GHz -I2 dB taper $D_{sub}=35\lambda$ $\Theta_{sub}=14^{\circ}$

January 2017

FORWARD SPILLOVER – GREGORIAN SUBRFLECTOR

I.42 GHz -I2 dB taper $D_{sub}=35\lambda$ $\Theta_{sub}=14^{\circ}$

versities Inc

National Radio Science Meeting – Boulder, CO

FORWARD SPILLOVER – HIGH GREG., LOW CASS

January 2017

TOTAL SPILLOVER – LOW CASS., HIGH GREG.

Total Spillover - Low Cass, High Greg; I.4 GHz

NSF Associated Universities inc

National Radio Science Meeting – Boulder, CO

SUBREFLECTOR PATTERN AT 1.2 GHz

National Radio Science Meeting – Boulder, CO

T_{SYS}/APERTURE EFFICIENCY

3.2 m SUBREFLECTOR T_{rx} =14K η_a = 62.3% CASS η_a = 64% GREG

January 2017

National Radio Science Meeting – Boulder, CO

versities Inc

DISH VERIFICATION ANTENNA

January 2017

MARCHING FORWARD

January 2017

National Radio Science Meeting – Boulder, CO

Inversities Inc

MARCHING FORWARD

- I. CALCULATE SPILLOVER FOR 18 MANTENNA
- 2. EFFECT OF SHIELD ON LOW GREGORAIN
- 3. GREGORIAN GEOMETRY FEED TO HORIZON
- 4. CASSEGRAIN / GREGORIAN WITH WIDE ANGLE SUBREFLECOTR
- 5. SYMMETRIC ANTENNA WITH BANDS >10 GHz

January 2017

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

BLOCKAGE η , DIFFRACTION LOSS

National Radio Science Meeting – Boulder, CO

versities Inc

The Object of Today's Talk

SKA Dish Verification Antenna 1, known as DVA-1

DVA-1 Design Report, NGVLA Meeting, Caltech, 2015-04-08, Matt Fleming

Antenna Several Positions

DVA-1 Design Report, NGVLA Meeting, Caltech, 2015-04-08, Matt Fleming

Optics Design Features of the design

- Clear optical path, no blockage or scattering.
- Shaped optics, leads to very low spillover. (~ -50db wide angle)
- Very low spillover yields very low antenna noise temp. (<6 K ground)
- Very low spillover results in high rejection of RFI and strong sources.
- Shaped optics yield high efficiencies, total result is a high Aeff / Tsys.
- · Ample space and access to mount multiple feeds on an indexer.
- · PAF works effectively at either secondary or primary focal area
- · Feed arm high chosen for structural cost reasons.
- · Feed arm low may produce slightly lower spillover for some WBSPFs.
- Feed maintenance access via a standard bucket truck.
- Primary area is 22% over symmetric but antenna cost is 13% more.
- Primary surface accuracy will need to be <1mm rms, 1/30 λ.

More features will be listed in the structural design section.

DVA-1 Design Report, NGVLA Meeting, Caltech, 2015-04-08, Matt Fleming

SCAN LOSS, COMA LOBE

January 2017

National Radio Science Meeting – Boulder, CO

niversities Inc

SUBREFLECTOR PATTERN AT 1.2 GHz

SUBREFLECTOR SCATTED BEAM (I.4 GHz)

HYPERBOLIC SUBREFLECTOR

VLA SHAPED

National Radio Science Meeting – Boulder, CO

SUBREFLECTOR SCATTERED BEAM (2.0 GHz)

HYPERBOLIC SUBREFLECTOR

VLA SHAPED

Θedge = 67.86°

Associated Universities In

National Radio Science Meeting – Boulder, CO