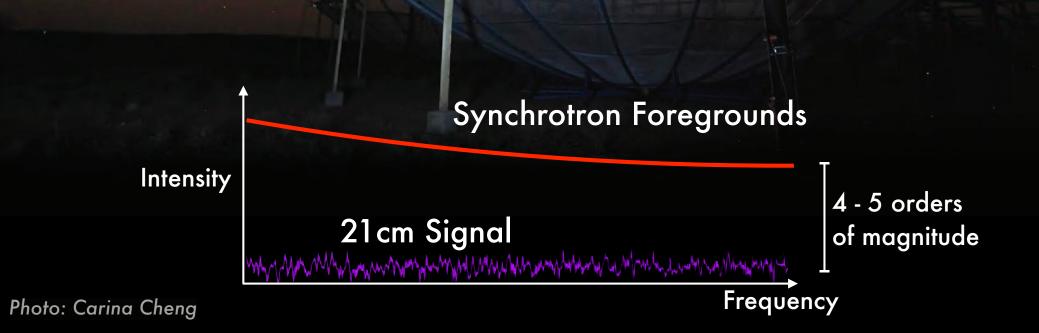
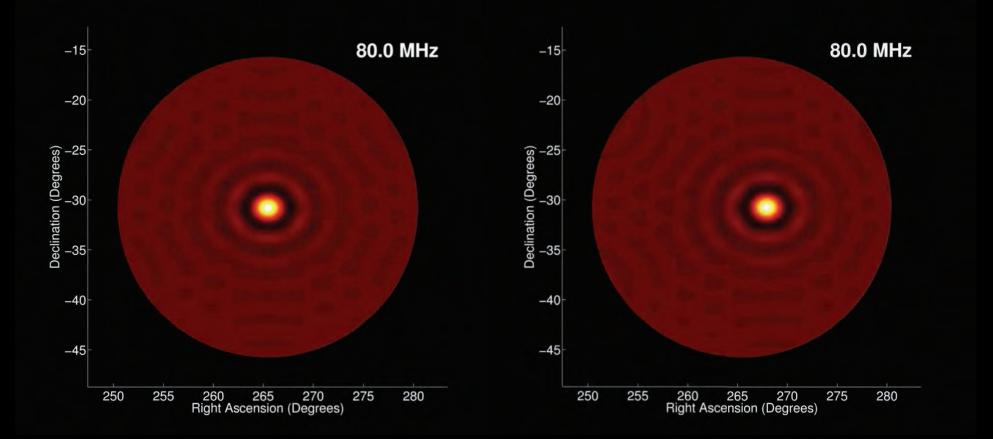
Precision Calibration for 21 cm Cosmology

Josh Dillon UC Berkeley

The key problem in 21 cm tomography is foregrounds (our Galaxy and other galaxies).

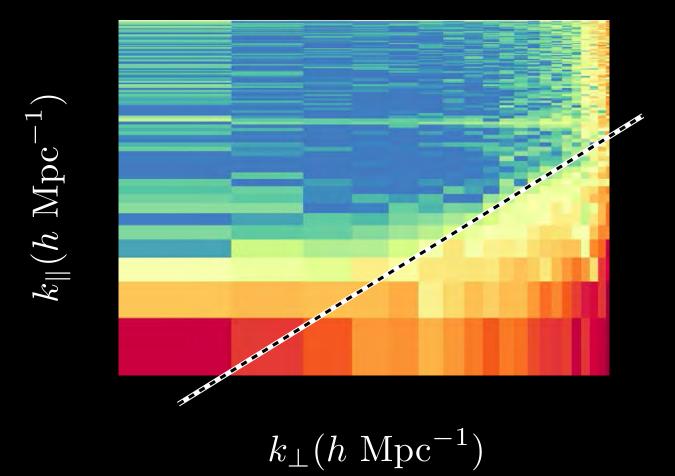


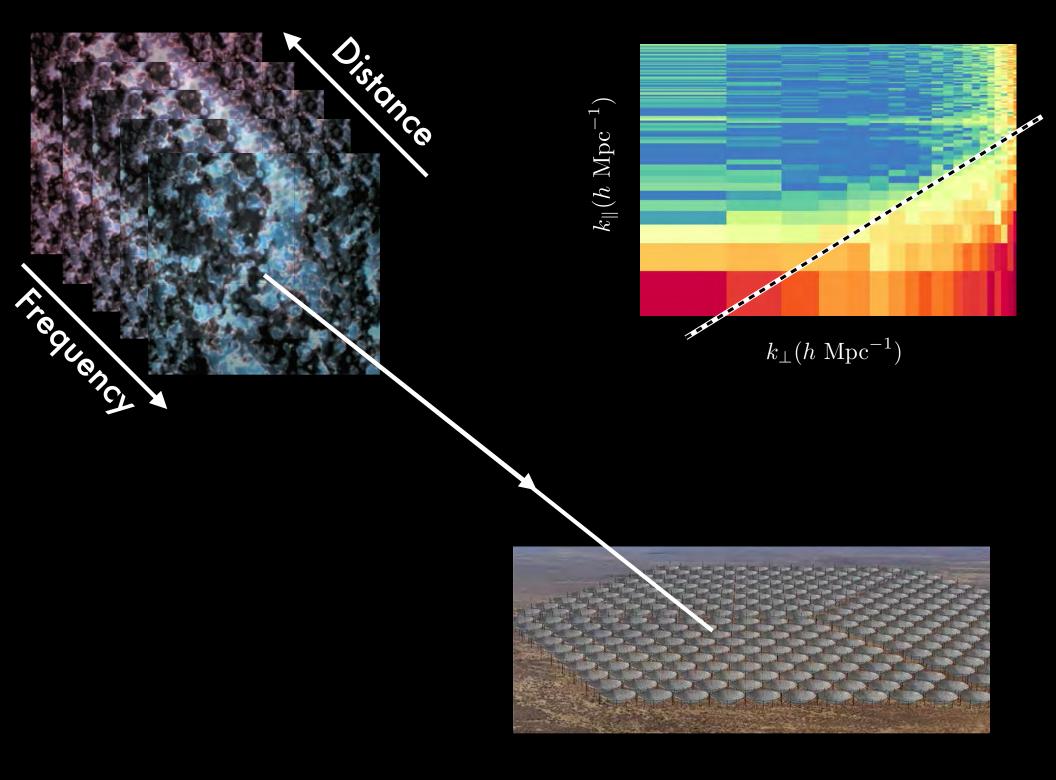
However, a frequency-dependent PSF creates spectral structure in smooth foregrounds.

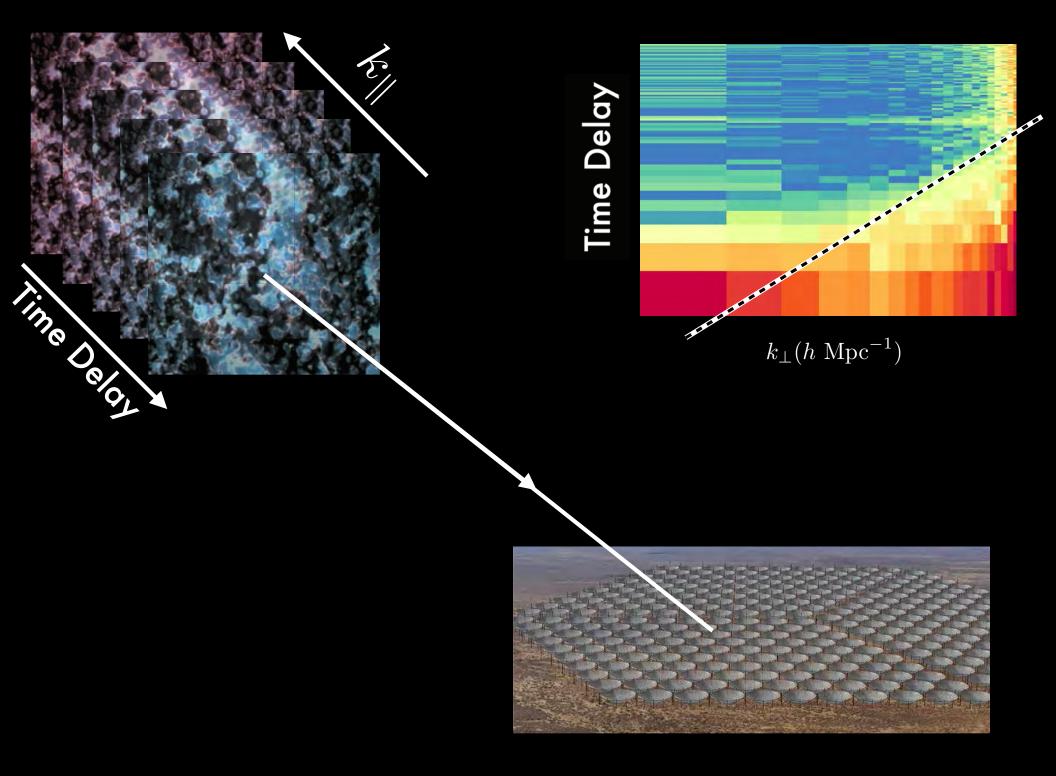


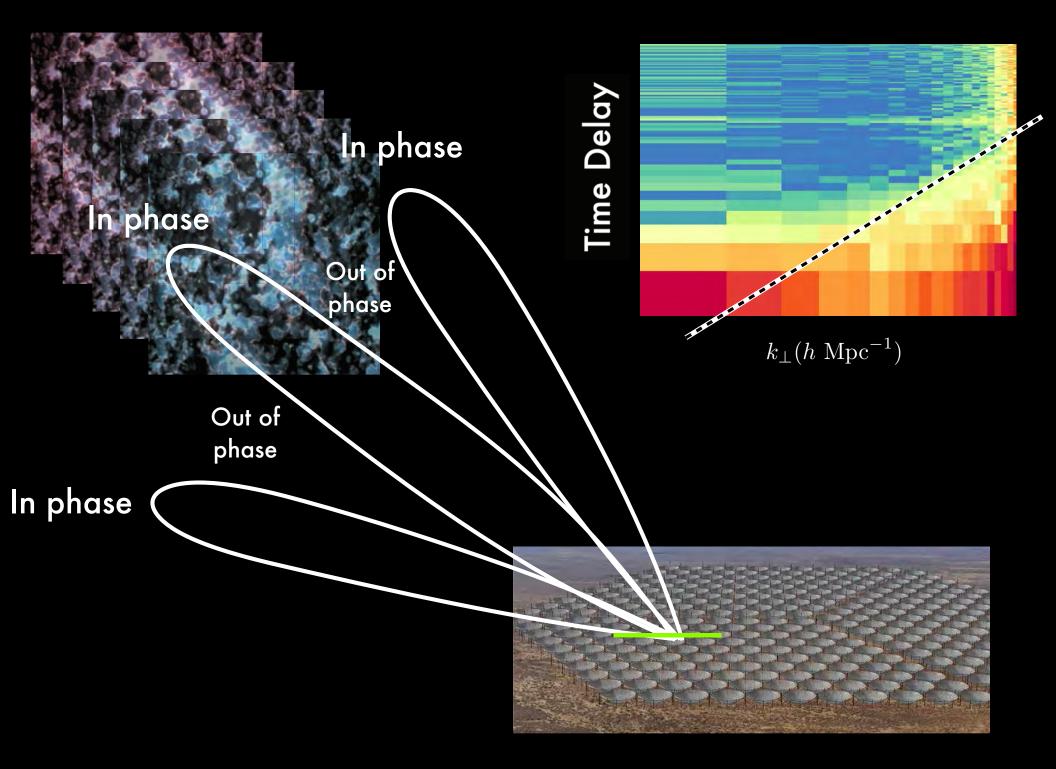
Dillon et al. (2015)

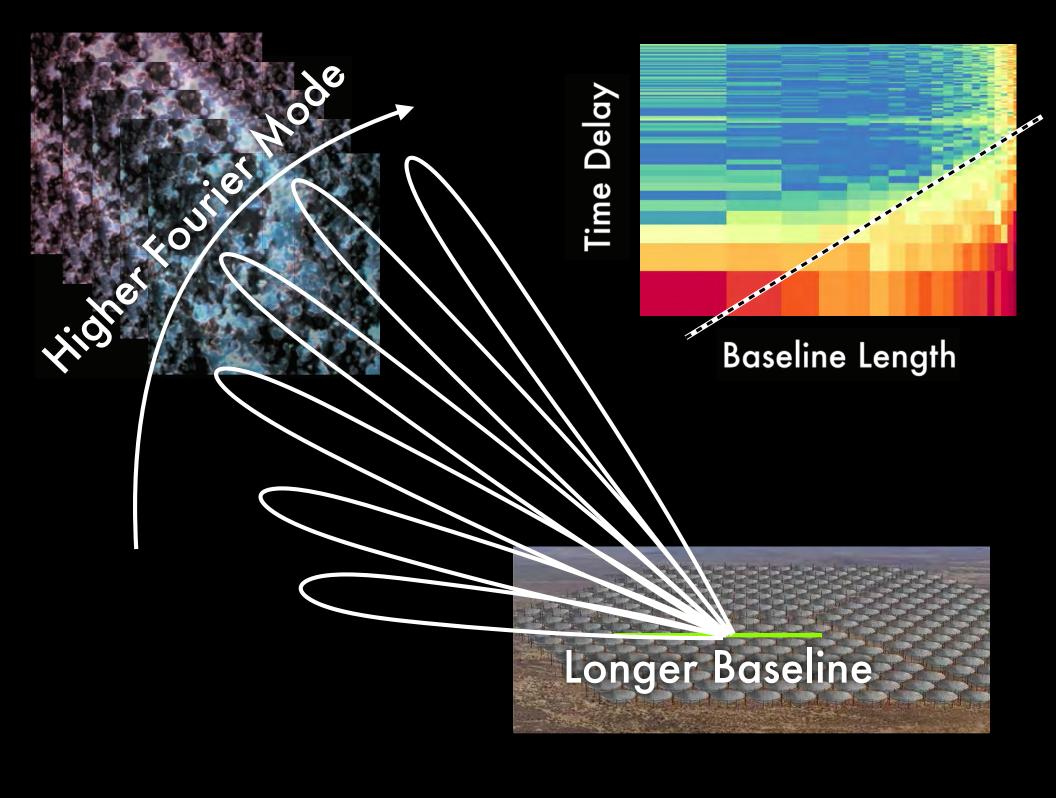
This creates the foreground wedge in the 2-D power spectrum.









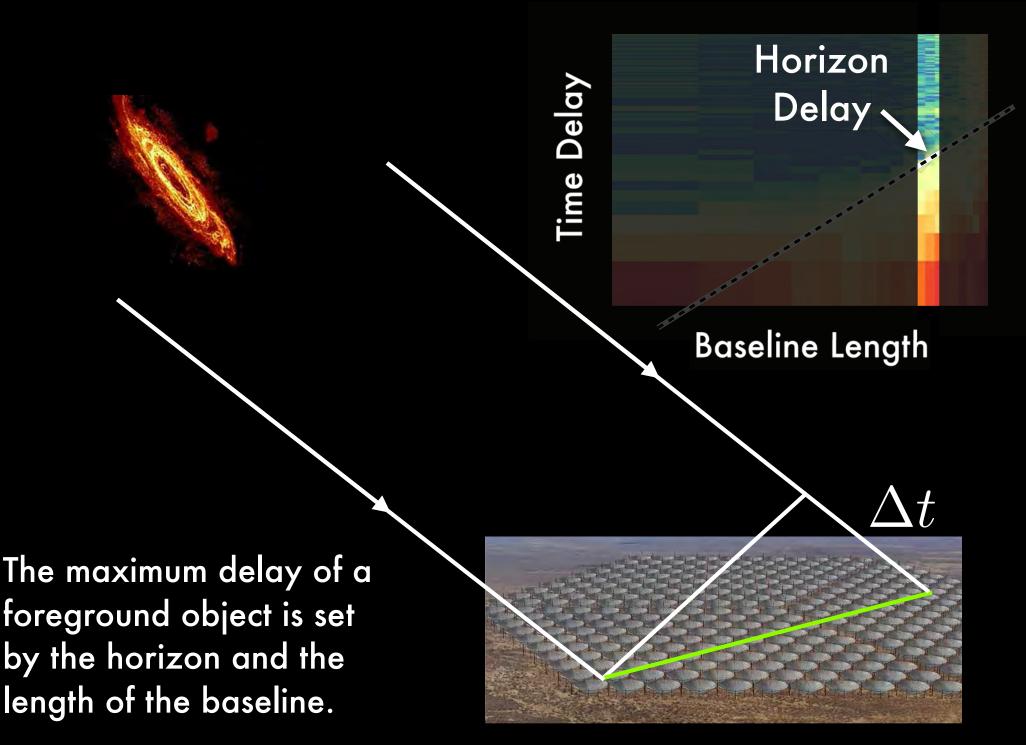


Time Delay

Baseline Length

The maximum delay of a foreground object is set by the horizon and the length of the baseline.

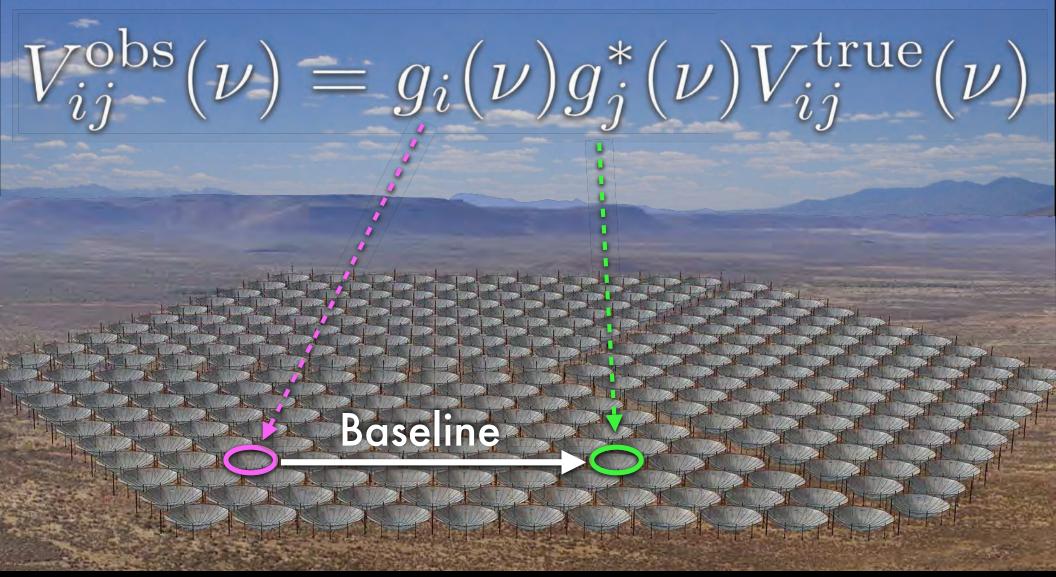
Parsons et al. (2012)



Parsons et al. (2012)

The key to foreground mitigation is a smooth instrumental response.

Calibration is key to spectral smoothness.

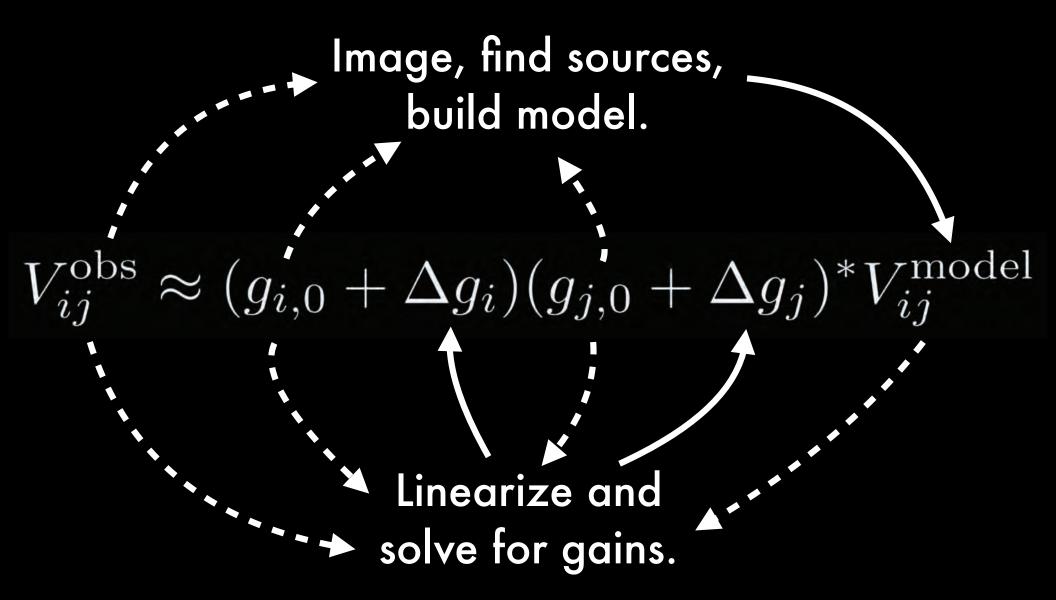


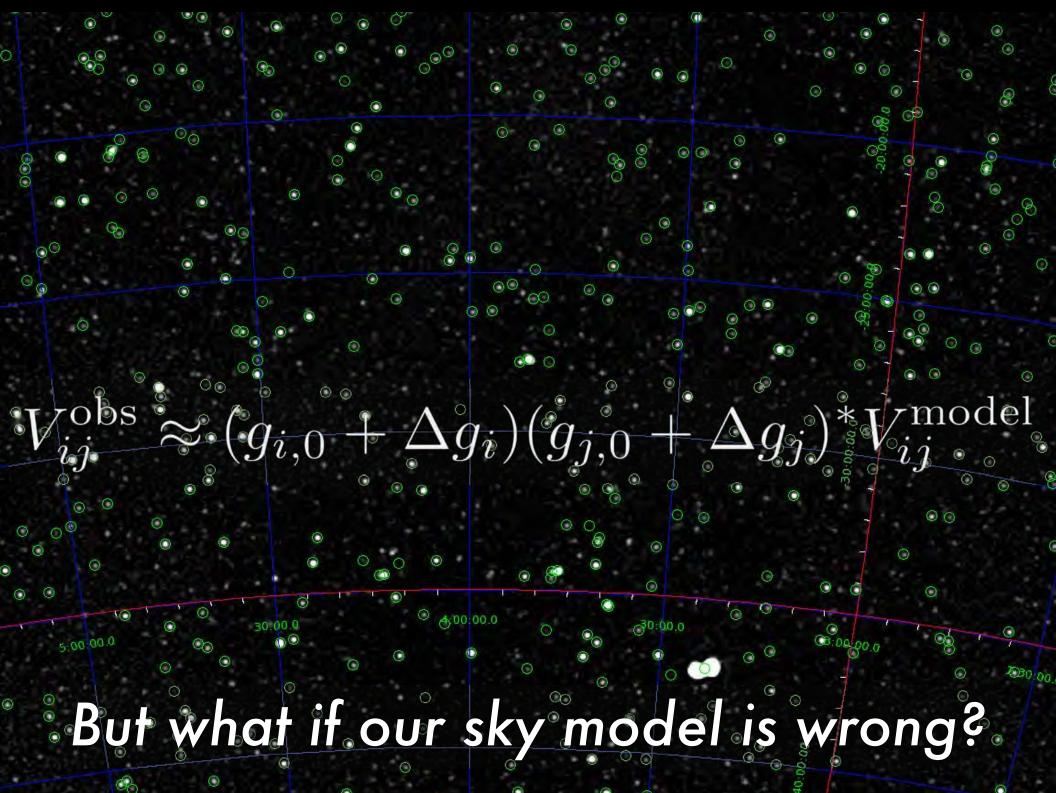
Calibration is key to spectral smoothness.

 $V_{ij}^{\text{obs}}(\nu) = g_i(\nu)g_j^*(\nu)V_{ij}^{\text{true}}(\nu)$ $V_{ij}^{\text{obs}} \approx (g_{i,0} + \Delta g_i)(g_{j,0} + \Delta g_j)^* V_{ij}^{\text{model}}$

Baseline

The Self-Cal Loop





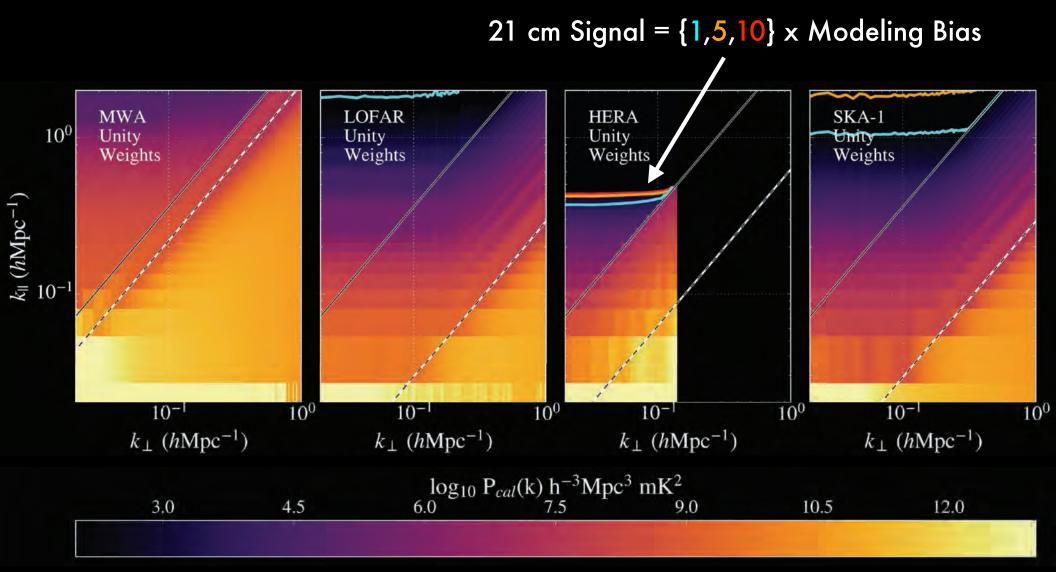
Point sources below the confusion limit

Chromatic errors in $V_{ij}^{ m model}(u)$

Spectral structure in $g_i(
u)$

Barry et al. (2016)

Structure in $g_i(v)$ given by longest baseline b_{ij} . Modeling error turns the wedge into a brick.



Ewall-Wice, Dillon, Liu, Hewitt (2016)

When linearizing and minimizing χ^2 ...

$$V_{ij}^{\text{obs}} \approx (g_{i,0} + \Delta g_i)(g_{j,0} + \Delta g_j)^* V_{ij}^{\text{model}}$$

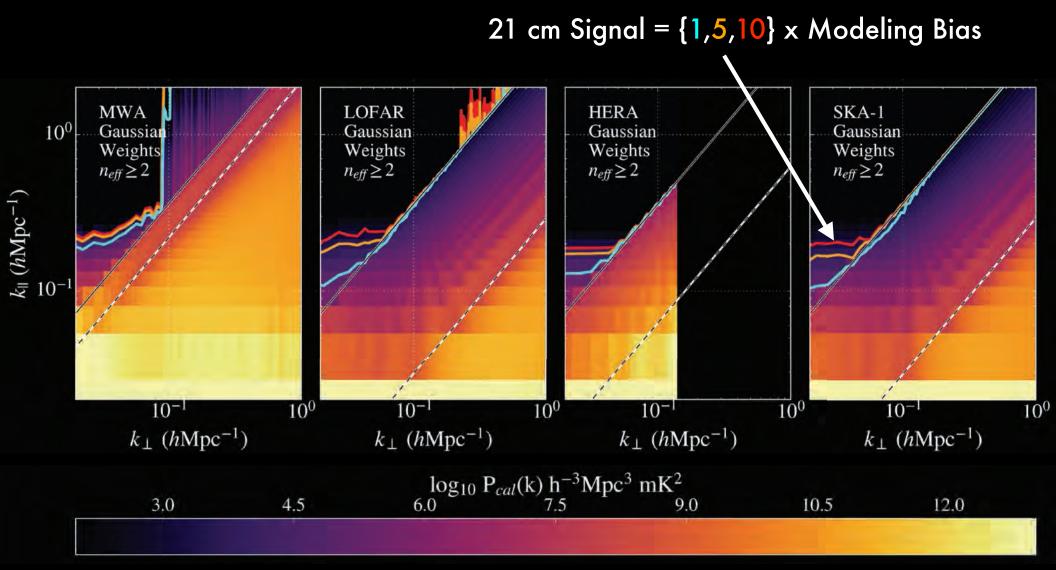
weight each equation in the system by

$$W_{ij} \propto e^{-b_{ij}^2/2\sigma_b^2}$$

to suppress gain chromaticity leakage from long to short baselines.

Ewall-Wice, Dillon, Liu, Hewitt (2016)

We can recover most of the EoR window for only a modest increase in noise.



Ewall-Wice, Dillon, Liu, Hewitt (2016)

HERA was designed to be precisely calibrated using redundant baselines instead of a sky model.

Liu et al. (2010)

Photo: Danny Jacobs

Property.

Many Observations

Few Unique Baselines

 $V_{ij}^{\rm obs}(\nu) = g_i(\nu)g_j^*(\nu)V_{ij}^{\rm true}(\nu) + n_{ij}$

Linearize...

 $\log\left[V_{ij}^{\text{obs}}(\nu)\right] = \log\left[g_i(\nu)\right] + \log\left[g_j^*(\nu)\right] + \log\left[V_{ij}^{\text{model}}(\nu)\right] + n'_{ij}$

...and then solve for both gains and unique visibilities simultaneously

Liu et al. (2010)

Redundant calibration was key to PAPER-64's power spectrum limits in Ali et al. (2015)

400

200

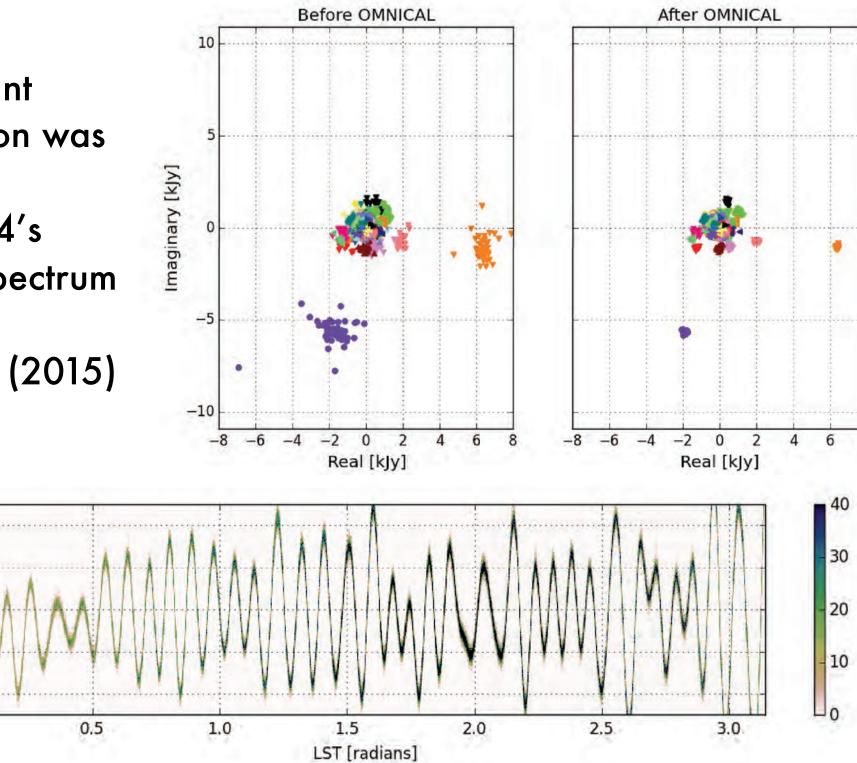
-200

-400

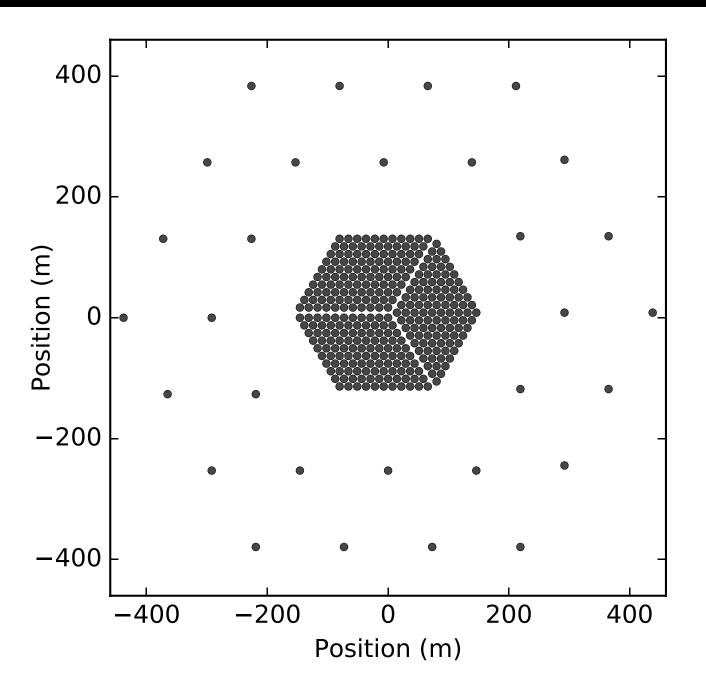
0.0

0

Visibility (real) [Jy]



8

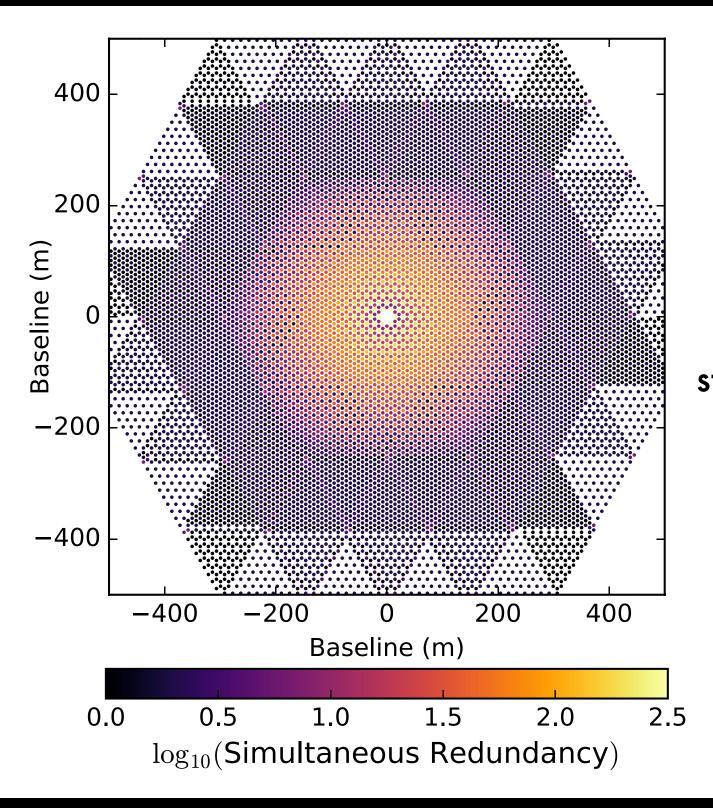


HERA's split configuration is designed for dense sampling of the uv-plane and redundant calibratability.

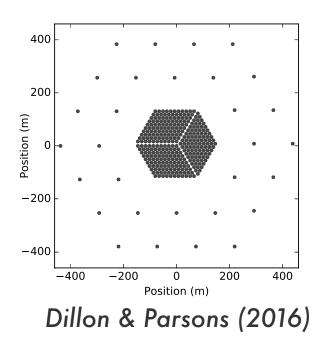
Unique Baselines:

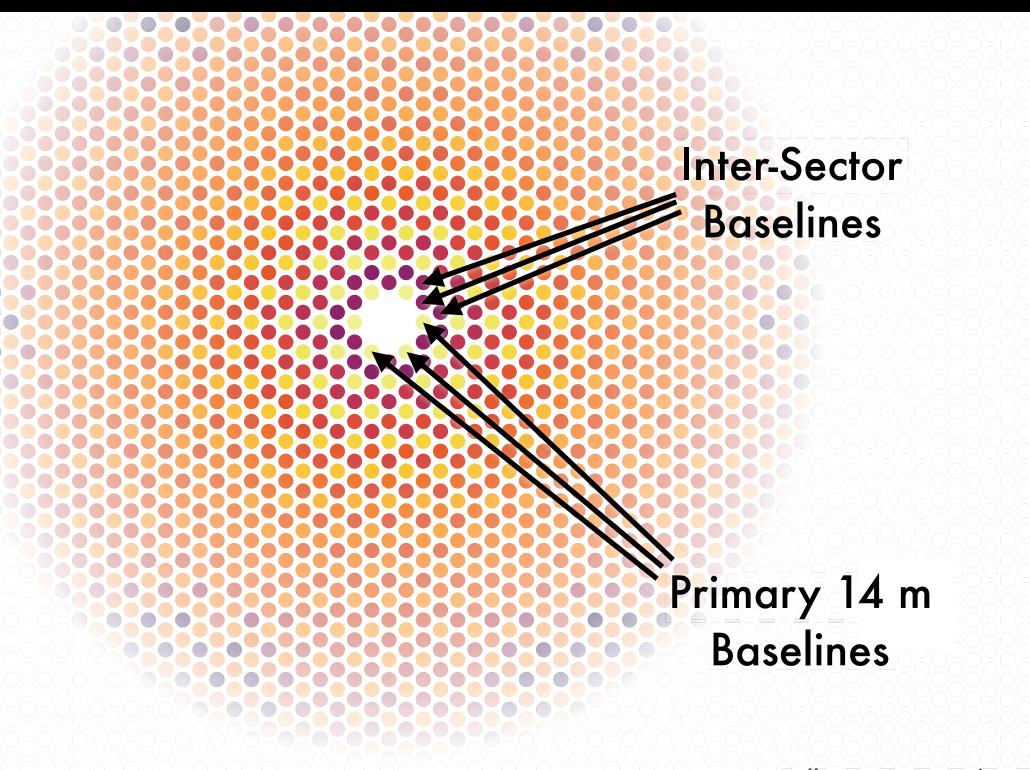
- Solid Hexagon: 630
- Split-Core: 1501
- + Outriggers: 6140

Dillon & Parsons (2016)

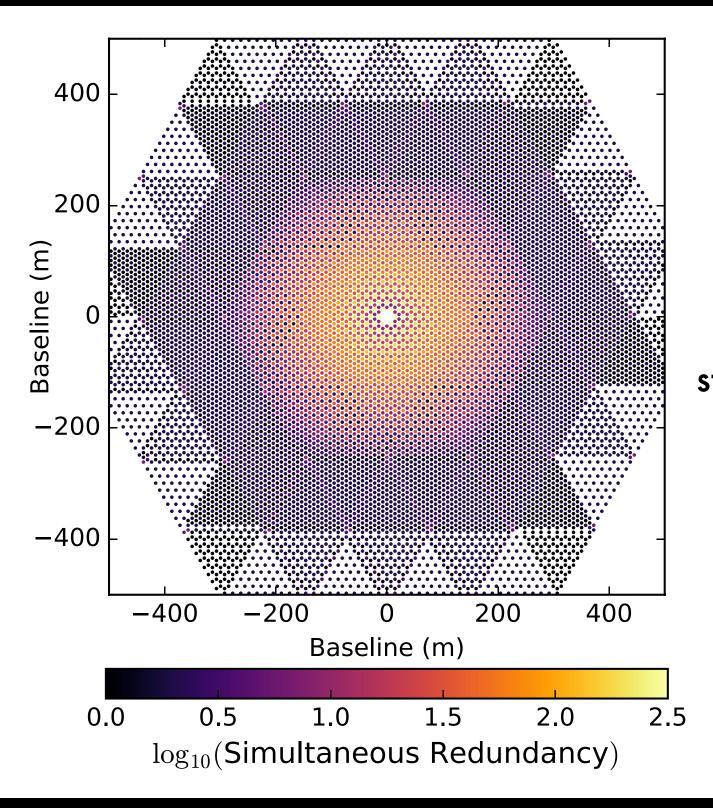


HERA's dense instantaneous coverage enables good widefield mapmaking but is still FFT-correlatable.

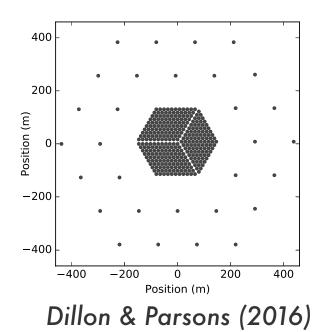


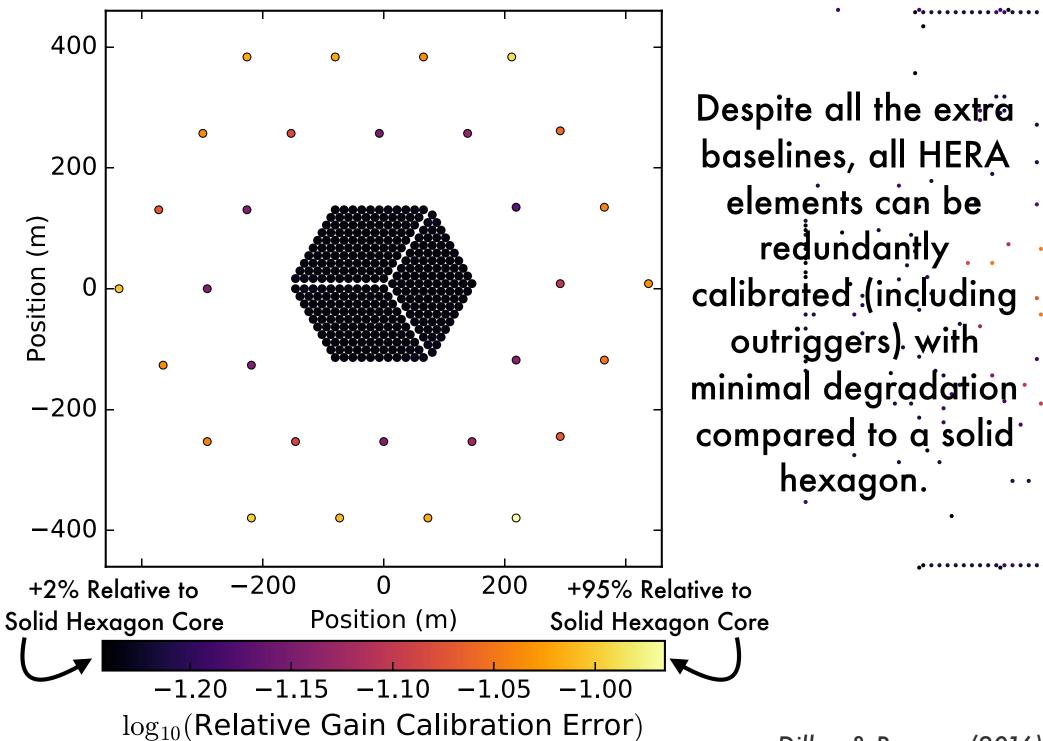


Dillon & Parsons (2016)



HERA's dense instantaneous coverage enables good widefield mapmaking but is still FFT-correlatable.





Dillon & Parsons (2016)

Redundant calibration isn't quite the whole story...

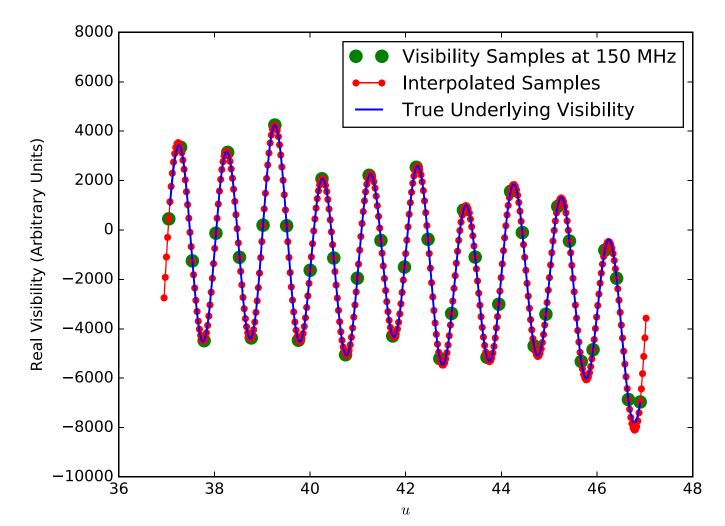
$$V_{ij}^{\text{obs}}(\nu) = g_i(\nu)g_j^*(\nu)V_{ij}^{\text{true}}(\nu) + n_{ij}$$

Raising all gains at one frequency is degenerate with lowering all visibilities at the same frequency.

 $V(\nu, \mathbf{b}_{ij}) = \beta(\nu) \int d^2 u' \tilde{B}(\nu, \mathbf{u}' - \mathbf{u}_{ij}) \tilde{I}(\nu, \mathbf{u}')$

Overall Bandpass: Potentially Complicated

Fourier interpolation gives high-u resolution visibilities with relatively few parameters.



Fourier Sky:

Very Spectrally Smooth

 $V(\nu, \mathbf{b}_{ij}) = \beta(\nu) \int d^2 u' \tilde{B}(\nu, \mathbf{u}' - \mathbf{u}_{ij}) \tilde{I}(\nu, \mathbf{u}')$ **Overall Bandpass:** Fourier Sky: **Fourier Beam:** Potentially Complicated Fairly Spectrally Smooth Very Spectrally Smooth 10² Visibility Samples at 150 MHz Fourier Transformed Beam 6000 Interpolated Samples True Underlying Visibility 4000 5-Parameter Hermite Fit Real Visibility (Arbitrary Units) 10^{1} 2000 **Beam Fitting Error** -2000 10⁰ -4000 Fourier Beam Weight -6000 10⁻¹ -8000 -10000 L 38 40 42 44 46 10⁻² **Realistic beams** 10⁻³ 10⁻⁴ are well modeled A STATISTICS CHILLION OF and the second all the Contration of the second 10⁻⁵ by few-parameter 10^{-6} models. -0.50.5 1.0 -1.00.0

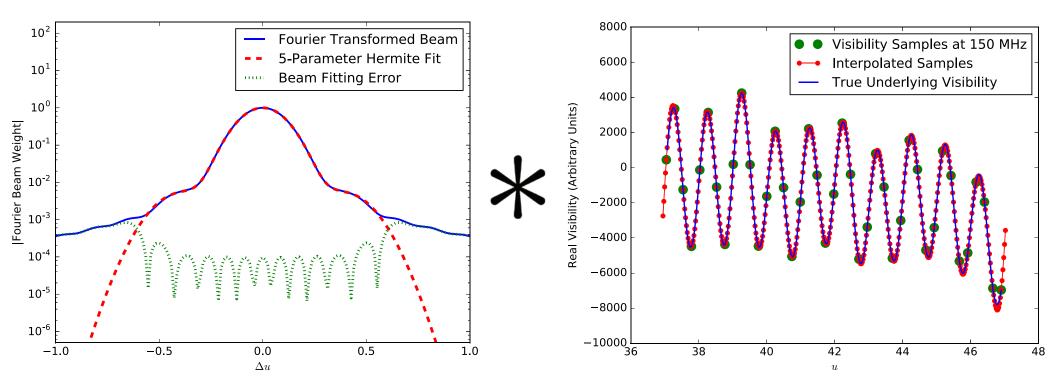
 Δu

 $V(\nu, \mathbf{b}_{ij}) = \beta(\nu) \int d^2 u' \tilde{B}(\nu, \mathbf{u}' - \mathbf{u}_{ij}) \tilde{I}(\nu, \mathbf{u}')$

Overall Bandpass: Potentially Complicated

Fourier Beam: Fairly Spectrally Smooth

Fourier Sky: Very Spectrally Smooth



Convolving the two gives a faithful model for all measured visibilities.

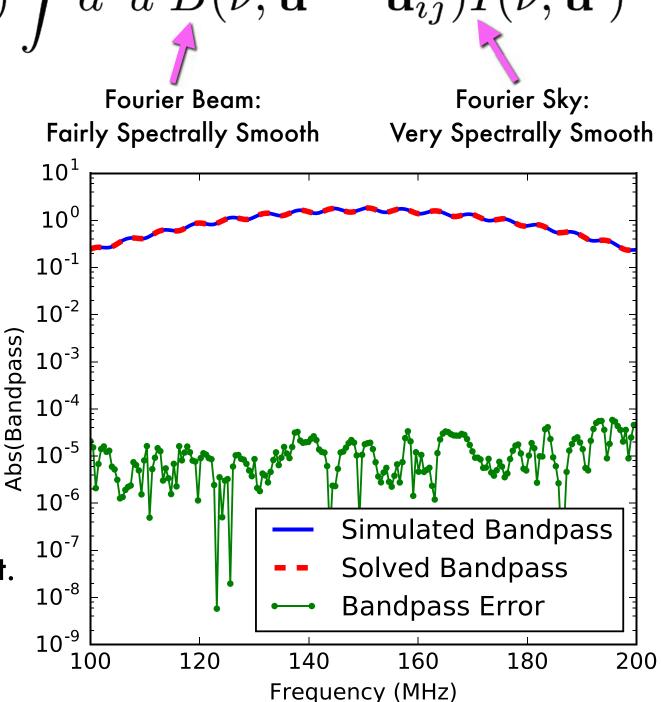
 $V(\nu, \mathbf{b}_{ij}) = \beta(\nu) \int d^2 u' \tilde{B}(\nu, \mathbf{u}' - \mathbf{u}_{ij}) \tilde{I}(\nu, \mathbf{u}')$

Overall Bandpass: Potentially Complicated

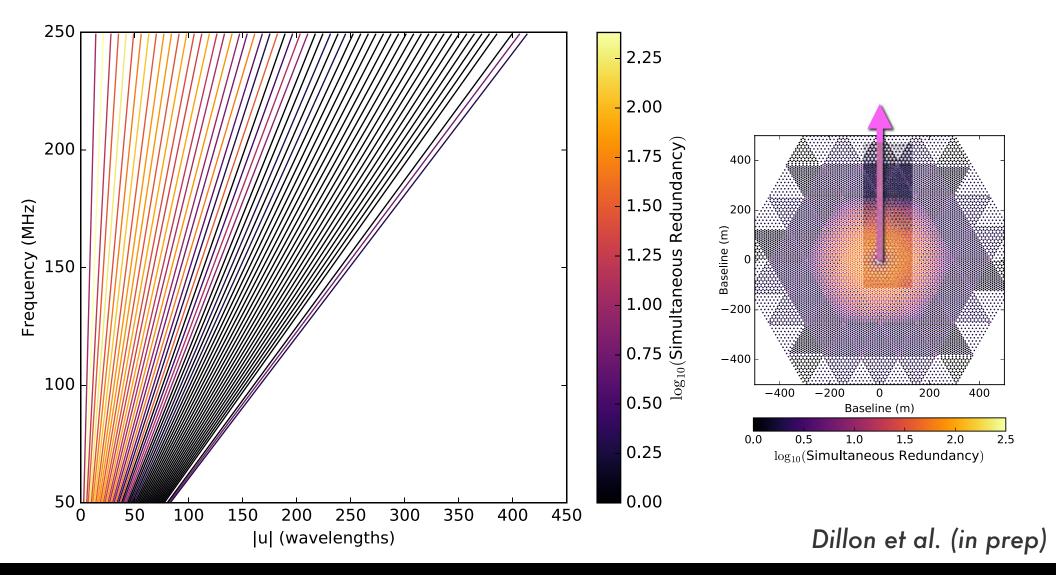
Therefore, we can use redundancy in u to calibrate the bandpass (up to some smooth function)...

...but there's still some complications to work out.

Dillon et al. (in prep)



The split core also increases the frequency sampling at fixed (u,v), enabling better bandpass calibration.



Precision calibration requires novel approaches.

Sky-based calibration:

 Modeling errors mix long and short baselines, turning the wedge into a brick. • This is mitigated with better weighting of modes. Redundant calibration: Relies on redundant arrays with near-identical elements, like PAPER and HERA. Normally only calibrates on a per-frequency basis, but overall bandpass calibration of PAPER and HERA is very promising.