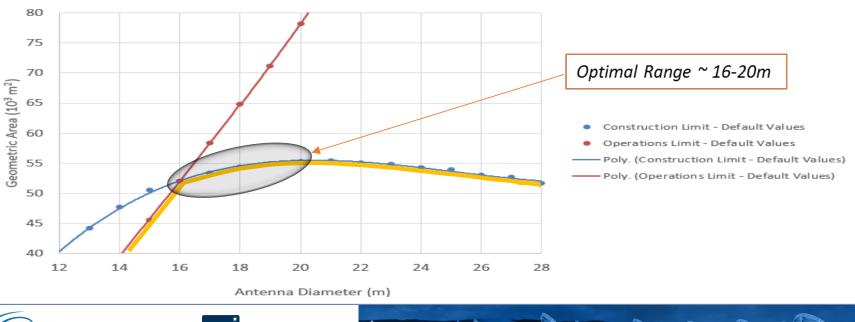


ngVLA Antenna Concept

J. Jackson, R. Selina, W. Grammer

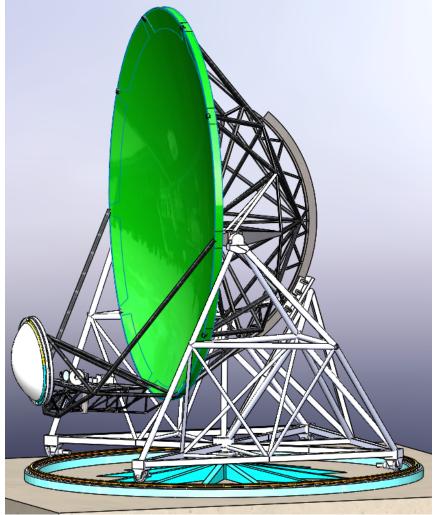
Topics

- Design Considerations
 - Antenna Size
 - Antenna Configuration
 - Optical Concept
- Specifications
- Technical Risk
- Design Studies



Design Considerations: <u>Antenna Size</u>

- 18 meter aperture size for baseline design
 - Good balance of sensitivity and survey speed
 - Meets construction and operations cost targets
 - Largest size that may be achievable w/ single piece rim supported composite reflector


Collecting Area vs Construction and Operations Cost Limits

Design Consideration: Antenna Configuration

- Offset Gregorian geometry w/ unblocked aperture
 - Minimizes scattering, spillover and sidelobe pickup
 - Wide secondary angle of illumination
 - Leads to low cost compact feed designs
 - Allow use of just two common cryogenic dewars for reduced operations and maintenance costs
- Feed Arm Low configuration
 - Better spillover performance
 - Simpler access for maintenance
 - Minimizes shadowing in array core

Drawing courtesy NRC Canada

Design Consideration: Optical Concept

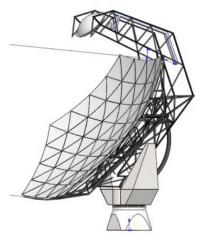
- Standard conic design.
- Minimal clearance between the subreflector and main aperture increases stiffness of the feed arm
- Wide subtended angle of the subreflector reduces the feed size.

 Q_2 MAIN REFLECTOR: 18 X 21.293 h = 9.100 $\theta_0 = 64.58^{\circ}$ PRIME PARABOLA FOCUS / FIRST ELLIPSOID FOCUS $\beta = 56^{\circ}$ l = 1.229-Q1 $\theta_e = 55.0^\circ$ SECOND ELLIPSOID FOCUS (FEED POSITION) $L_s = 1.960$ SUBREFLECTOR: 3.2 X 3.439 .426 110⁰° F = 7.200

Preliminary Technical Specs

Fully documented in Preliminary Antenna Technical Specification: Project Document No. 020.25.00.00.00-0001-SPE Release "A".

Parameter	Summary of Requirement	Reference Regs.
Frequency Range	1.2-116 GHz	ANT0101, ANT0102, ANT0103
Diameter	18m	ANT0202
Number of Antennas	214	ANT0401
Surface Accuracy	 Precision Operating Conditions 160 μm RMS (λ/16 @ 116 GHz), primary and subreflector combined. Normal Operating Conditions 300 μm RMS, primary and subreflector combined. 	ANT0501, ANT0502
Pointing Accuracy	 Precision Operating Conditions: Absolute pointing: 18 arc sec RMS Referenced pointing: 3 arc sec RMS (4 deg angle, 15 min time) Normal Operating Conditions: Absolute pointing: 35 arc sec RMS Referenced pointing: 5 arc sec RMS (4 deg angle, 15 min time) 	ANT0611, ANT0612, ANT0621, ANT0622
Tracking Range	Azimuth: ± 270 deg Elevation: 12 deg to 88 deg	ANT0801, ANT0802
Movement Rate	Slew: Azimuth 90 deg/min, Elevation 45 deg/min. Tracking: Azimuth 7.5 deg/min, Elevation 3.5 deg/min.	ANT0901, ANT0902, ANT0906
Antenna Geometry	Offset Gregorian, satisfying Mizuguch-Dragone polarization condition, with focal point on bottom.	ANT0201, ANT0206, ANT0211
Environmental conditions	 Survival Conditions at Stow Position: Wind ≤ 50 m/s, temperature ≥ -40 C, 2.5 cm radial ice, 25 cm snow in dish. 2.0 cm diameter hailstones Precision Operating Conditions: Night time only, wind ≤ 7 m/s, 	ANT1411 through ANT1446
	temperature \geq -15 C, no precipitation. Normal Operating Conditions: Day and night, wind \leq 10 m/s, temperature \geq -15 C, no precipitation.	


Technical Risk: Challenging 3" Reference Pointing Requirement

- Leads to the need for a:
 - Very stiff structure
 - Substantial Antenna Foundation
 - Advanced drive system
- Solution is application of new and novel technologies
 - Composite structural members in feed arm & backup structure
 - Reduces mass
 - Increases structural stiffness
 - Composite reflectors
 - Wheel & track type mount using COTS crane rail components

Current planning leads to Meerkat style pedestal antenna w/ feed low configuration & challenging mechanical design

Pedestal design leads to feed up configuration which is more difficult to maintain

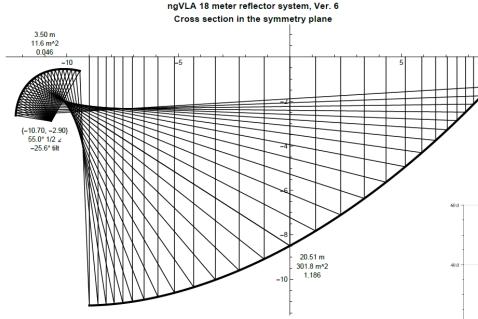
Wheel & Track design w/ feed down configuration is more compact and easier to maintain

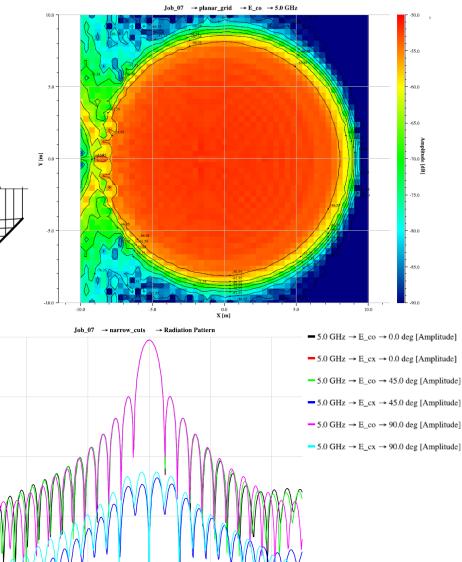
Drawings courtesy M. Fleming, R. Schultz, D. Enterline

- The ngVLA project is currently in requirements definition and conceptual development stage
- Proceeding beyond this requires endorsement of:
 - Astro 2020 Decadal Survey
 - NSF Division of Astronomical Sciences Directorate
- Project merit will be judged on technical readiness & cost realism
- At ~50% of the project cost, a clear understanding of the antenna design and costs are critical to this process
- Several design studies are underway to address these areas

- General Dynamics, Richardson TX
 - Contract under negotiation for a costed reference design to meet project specifications
 - Explores cost effective concepts that meet project requirements
 - Provides a reference design w/ known technical risk and cost
 - Provides sufficient detail to reliably estimate cost & performance
 - Not sufficient detail to allow construction of a prototype
 - NRAO expectations:
 - Design can be manufactured in volume and delivered affordably
 - Will not push technical boundaries
 - Also focused on:
 - Reduced maintenance burden
 - Reduced total life cycle cost

- National Research Council of Canada 18m study
 - Produce an alternate concept for an 18m design emphasizing composite reflectors, likely single-piece reflectors.
 - Intended to be complementary to the General Dynamics reference design which:
 - Is inherently lower risk
 - May avoid using emerging technologies and techniques
 - NRC's work is:
 - Higher risk for higher reward
 - Ensuring that novel and viable concepts continue development through to the conceptual design down select


- National Research Council of Canada Optics study
 - Study of optics for the 18m offset Gregorian antenna
 - Objectives:
 - Define "optical prescription" of ngVLA Reference Design
 - Provide EM analysis of reference design optics
 - Design will employ shaped reflectors to
 - Optimize forward gain
 - Reduce spillover temperature w/ single pixel feeds
 - This optical design will be used by both General Dynamics and NRC Canada for their respective antenna design studies



- Shaped reflectors for optimal sensitivity with single pixel feeds
 - 89 % illumination efficiency with idealized Gaussian feed
 - -20 dB first sidelobe

0.0 θ [deg] 1.0

2.0

Images courtesy Lynn Baker & NRC

References

R. Selina, ngVLA Antenna: Preliminary Technical Specifications Version A (2017)

- R. Selina D. Chalmers, Statement of Work NRC 18m ngVLA Antenna Study (2017)
- L. Baker, D Chalmers, ngVLA Optical Design Study Statement of Work (2017)

M. Fleming, ngVLA Memo #25 Exploration of Suitable Mounts for a 15m Offset Antenna (2017)

D. Chalmers, G Lacy, M. Islam, M. Fleming, L. Baker, ngVLA Memo #26 ngVLA Technical Study – Offset Gregorian Antenna (2017)

M. Fleming, R. Schultz, D. Enterline, ngVLA Memo #27 Various Suitable Mounts for an 18m Antenna (2017)

L. Baker, First Results from an ngVLA Design with a new Mapping Function. (2017)

ngvla.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

