Progress on HIRAX, the Hydrogen Intensity and Real-Time Analysis eXperiment

Emily Kuhn, on behalf of the HIRAX collaboration

What are we looking at?

Can probe with 21cm (not just for EOR)!

Baryon Acoustic Oscillations (BAOs)

- Characteristic length scale set when CMB was formed.
- Truly precise measurements all at low redshift
- Successful measurements will help constrain dark energy!

Intensity Mapping: Low spatial, high frequency resolution images

Increase volume of data

Challenge:

measurements contaminated by bright sources (galaxy!) emitting in band of interest

plot by Phil Korngut (Caltech)

Hydrogen Intensity and Real-time Analysis eXperiment

Goal: measure BAOs with Hi intensity mapping to constrain Dark Energy equation of state.

"Hydrogen Intensity" = BAO

"Real-time analysis" = FRBs

(Funded by South Africa)

Prototyping:

HIRAX Specifications

Range: 400-800MHz (.8<z<2.5)

Resolution: 390kHz; 1024 channels

Collecting area: 28,000m²

System temp: 50K (goal)

Goal: 1024 dish array

Calibration

Goal: map beam to 1 part in 10⁻⁴

Challenge: dishes are stationary

Solution: drone

- Far field = 200m max \rightarrow attainable!
- Demonstrated by HERA, etc.
- Considerations:
 - i. broadband noise source
 - ii. drone carriable
 - iii. remove RFI from drone
 - iv. retrieve data

J. R. Shaw et al., Phys. Rev. D 91, 083514, (2015)

Hardware

T_{sys} dominated by initial LNA—challenging to measure!

Measuring T_{sys}

Measurements obtained from autocorrelation data

Measuring T_{sys}

Measurements obtained in Karoo Dessert (SKA site/future HIRAX location)

Measuring T_{sys}

Next step: build testbed for more controlled measurement of T_{sys} in Newburgh lab at Yale

Science Forecasts: BAO

Science Forecasts: Calibrating LSST Redshift Error

Science Forecasts: Fast Radio Bursts (FRBs)

- Bright ms pulses of unknown origin
- ~25 published bursts, but total event rate estimated 10⁴ over full sky

- 8-dish outriggers: Botswana, HartRAO, etc.
- HIRAX projected to find dozens per day

HIRAX: Current Status

- Eight-element array up and running!
- See fringes in first data

Conclusion

HIRAX

- 21cm intensity mapping experiment
- Based in and funded by South Africa
- Will measure BAOs to constrain Dark Energy EOS parameters
- Useful for calibrating LSST redshift measurements, detection of FRBs

Next steps

- Finalize dish, hardware design
- Accurate measurement of Tsys
- Preliminary drone measurements
- On site improvements: weather proofing, radomes, etc

For more details, see Newburgh et al., arXiv:1607.02059 (2016) or our website: <u>http://www.acru.ukzn.ac.za/~hirax/</u>

Thank you!

