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INTRODUCTION

e Radio astronomy — The study of radio sources in deep space.
* The signals received from the sources are 20 dB or more below the noise floor.
* Sources include pulsars, Fast Radio Bursts (FRBs), HI galaxies, etc.




GREEN BANK TELESCOPE (GBT)

* The world’s largest fully steerable
telescope (100 m diameter
reflector).

* Located at the Green Bank
Observatory (GBO) in West
Virginia.

* Focal L-band Array for the Green

Bank Telescope (FLAG)
deployment.

 Instrument placed at the feed of
the telescope.




BACKGROUND

Phased Array Feeds (PAFs)

* A 2-D planar array of antennas placed at the focus of a large telescope
dish that spatially samples the focal plane.

* Focuses a tight airy pattern spot of energy at the array.

* Advantages:
 Larger field of view than the traditional single-pixel horn feed.
* Increased survey speed due to large field of view.
* Sensitivity optimization due to an increase in effective aperture area (A,).
* Radio frequency interference mitigation.

* FLAG used to detect sources such as HI galaxies, pulsars, and FRBs.
* Detect radio transient sources using real-time beamforming.



PAF BEAMFORMING

* PAFs used to form multiple simultaneous beams over a field of view
referred to as beamforming.

« Sample voltages received : %
by each element.

* Multiplied by complex ) Q?W
weight coefficient. R \h
[w,
e Summed across elements — @?
to form beam in
direction, 0.




FOCAL L-BAND ARRAY FOR THE GBT (FLAG)

* Wide field astronomical PAF
receiver with broadband signal
processing and operational
science observation capability.

* Back end currently in
development by BYU, GBO, and
WVU.

* Performs fine/coarse channel
correlation as well as real-time
beamforming.
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PAF RECEIVER FRONT END

19 dual-polarization element array built by Brigham Young University.

Cryogenically cooled low noise amplifiers (LNAs) built at the National Radio Astronomy
Observatory (NRAO).

Digitz;\c!tc)jown converter directly samples and digitizes the signal before it is transported
over fiber.




FLAG DIGITAL BACK END

5 digital optical receiver cards
connected to 5 ROACH Il FPGA
boards which are in turn i
connected to 5 I/F cards. . ,» P XA

* The ethernet switch packetizes
the data further for the 5 High
Performance Computers (HPCs).

e Each HPC contains 2 Graphical
Processing Units (GPUs) for
parallel computation.

e 150 MHz bandwidth (500
frequency bins) evenly distributed
across HPCs.

* There are 100 frequency bins per
HPC each 303 kHz wide.
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FLAG TESTING/COMMISSIONING

* Three commissioning runs.
e July 2016
« May 2017
e July 2017

e Data was analyzed using:

* T,,s/M which is the ratio of the system noise temperature to the antenna efficiency.

* Sensitivity maps which indicate sensitivity (A ,n/T,) at different coordinates within
the field of view.

* Element patterns.
* Beam patterns.

. -llw-s S/nfof 58.2 K was recorded which is comparable to that of the single-pixel
rn feed.

* Radio source plots were generated by PhD students from WVU.



SENSITIVITY MAPS

» X-polarization (left) and Y-polarization (right).
* Cross-elevation and elevation coordinates on the x and y axes respectively.

Formed Beam Sensitivity Map - Xpol, 1404.74 MHz Formed Beam Sensitivity Map - Ypol, 1404.74 MHz
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Ts,s/M

e Xand Y polarizations are shown in
the figure.

* The plot shows the measured
T,s/M of 28.2 K at approximately
1405 MHz.

* The gaps are masking the RFl in
the plot and only 2 out of 5 of the
bandwidth was available during
this commissioning run.
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ELEMENT PATTERNS

e X polarization (left) and Y polarization (right).

 Distortion in Y-polarization is due to malfunctioning elements.
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BEAM PATTERNS

X polarization (left) and Y polarization (right).
* Distortion in Y-polarization is due to malfunctioning elements.
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PULSAR B193/7+21 DETECTION

* The signal is seen moving
across frequency as time
samples advance (top).

* Dedispersion aligns the ”
signal across time
(middle).

* The data is integrated
across frequency to -
produce the bottom plot. . . ‘

Dedispersed Time Series
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CONCLUSION AND FUTURE WORK

* Conclusion

* Conducted experiments in Green Bank WV that enabled the measurement of
a T,s/n of approximately 28 K, comparable to that of a single pixel horn feed.

* Implemented signal processing code that enabled pulsar detection with the
first cryogenic astronomical phased array feed (PAF).

e Future work

* Implement a commensal mode with both real-time beamforming and
correlation.

* Generate weights with GPU after calibration scan.

* Optimize GPU code to increase processing speed and improve data transfer
between threads.



