Sustaining ALMA Science Through 2030 A North American Perspective

A Short Overview Al Wootten

ALMA, A WORLDWIDE COLLABORATION

Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array

ALMA's Future

- The original specifications and most construction contracts were let ~15 years ago; those specifications are mostly demonstrated
- Technology has advanced tremendously since
- The community is outlining a new vision to extend ALMA science into the future
- ALMA Development funds enable studies which can underpin that vision
 - Studies are available in the ALMA Memo Series or as Development Reports; they are open to community participation
 - SACs and science team combined these into a palette of possible upgrades summarized in 'ALMA2030'
 - Community now engaged in transforming these elements and others into a science-driven roadmap for the next 5-15 years
- ALMA Development Projects fund upgrades to ALMA to achieve that vision, as they have for Bands 1 (35-51GHz) and 5 (163-211GHz), and will for the remaining Bands and other capital investments

ALMA Development

- ALMA Operations included development funds
 - Ramped up to steady-state level by FY2015
 - First priority was to build to unfunded requirements (receiver bands, VLBI)
- ALMA Integrated Science Team working with the ALMA Science Advisory Committee (ASAC), developed
 PATHWAYS TO DEVELOPING ALMA (ALMA2030)
- Using information gleaned from various sources,
 Pathways informs discussions leading to assembly of a
 Roadmap for ALMA improvements
- All depends on protecting spectrum! [See Liszt talk]

ALMA Development Overview

- ALMA Operations comprises many organizations in many countries and many entities participate in Development in parallel but slightly different fashion
- Projects are large pan-ALMA efforts, budget ≥\$.2M taking several years, culminating in major new capabilities or improvements
 - Begin with recommendation of ALMA Executive(s), perhaps in response to a Community Call
 - Need approval of ALMA Management Team (JAO, EA, EU, NA), ASAC advice and recommendation of ALMA Director to ALMA Board
- Studies and small projects are shorter term, lower budget endeavors
 - Normally, Studies are initiated by a Community Call for Ideas
 - May lead to projects, singly or collectively
 - Funding at discretion of ALMA Executives
- Both are guided by a constellation of potential improvements, many listed in a published document known as 'ALMA2030'
- A specific upgrade program is currently under review, 'ALMA Development Roadmap'

Progression of ALMA Development Components

NA Development Program

0.9

0.8

0.7

0.6

imi

Current Project Overview

- Correlator Upgrade [See Amestica talk]
- ALMA Phasing Project upgrade [See Matthews talk]
- Fiber optic connection ALMA to JAO improves PI data delivery
- B3 upgrade to deliver improved TP stability
- Recently delivered ADMIT and CARTA projects for improved archive use
- New ALMA Band 2+ provides new science: *sensitive* access to redshifted CO 'desert' and deuterated light molecules passed PDR May 2017
 - NRAO + NAOJ, suspended

ADMIT products are delivered with data packages, also archived (currently independently)

Fiber Optic Project

Band 2+

Design & Testing of a Prototype 67-95GHz Cartridge PDR May 2017: NRAO/CDL developed the most sensitive receiver for this frequency range ever tested.

Band 3 CCA Heater Installation for Deflux Operation

Three Projects continue during FY2017.

Correlator Upgrade Key to ALMA2030 Goals

- 12 high resolution 58 MHz windows available (need one low res window for continuum)
- Many lines cannot be covered
- Upgraded correlator provides broader windows at high resolution, in addition to higher resolution across them
- Capable of doubling current spectral grasp, to 2x4GHzx2polx2SB

- In Red are important lines that are missed with current correlator
- Upgraded correlator accesses all the missed lines at the current resolution, using wider filters, shown in <u>blue</u>.

EU Development Program

USNRSM 2018

Current Project Overview

- New ALMA Band 5 (163-211 GHz) provides new science:
 - Follow the Water!
 - 183 GHz water line
 - [CII] at 8.0 < z < 10.65
 - Consortium of GARD, NOVA, NRAO, ESO, NAOJ
 - Public Data available (SV)
- ALMA Alarm System

EA Development Program NACJ

Current Project Overview

- Band 1 (35-51 GHz) enables new science: [Morata talk]
 - Optically thin dust in disks
 - High z CO
 - T_{rx} ~25K; ASIAA, with NAOJ, U of Chile, NRAO, HIA; available ca 2020
- GPU Spectrometer for TP (w/KASI)
- Band 5 Integration and Testing
- Band 2, 2+3 optics
- Artificial Calibration Source
 - Beacon at Chajnantor
 - 100 GHz delivered
 - 230/345 GHz 2018
- High Critical Current Density (Jc) SIS Junction Device Development (esp Wideband RF/IF and THz devices)

Band I Receiver

ACS acceptance at OSF

NA Development Program

Cycle 4 Study Overview

Acting on ALMA2030 roadmap:

- Increasing receiver sensitivity, bandwidth
 - 1. Upgraded ALMA B3 mixer block Henke
 - 2. 2nd generation SIS receiver development –Kerr*
 - The Next Generation ALMA Correlator [Weintroub talk]
 Total Power Map to Visibilities (TP2VIS)
 a) Joint deconvolution b) Current mode
- Expanding ALMA's processing bandwidth
 - 1. Upgrade of Backend Antenna Article to match correlator upgrade Ford
- Improved data use
 - 1. Improved interactive CLEAN
 - 2. Improved imaging with combined arrays
- Maximizing point source sensitivity and resolution
 - 1. Weak source and spectral line VLBI* [Matthews]
- *Previously:* ALMA Pulsar Capability (Cordes)

Pulse profile of the Vela pulsar at 86 GHz

A protoplanetary disk simulation: r: current bandwidth l: upgraded 2x BW.

Development of 2nd Generation SIS Receivers for ALMA: Prototype balanced B6 amplifier 4-12 GHz

Five Cycle 4 Studies underway.

NA Development Program

Cycle 5 Study Overview

Acting on the ALMA2030 vision:

- Increasing receiver sensitivity, bandwidth
 - 2nd Generation SIS Receiver Development Kerr [See Noroozian talk]
- Expanding ALMA's processing bandwidth
 - Quantum-Limited Very-Wideband 4-Kelvin RF and IF Amplifiers for ALMA – Noroozian [see talk]
- Improved data characterization
 - Neural Network Analysis of ALMA Datasets Neural Network analysis highlights departures from Keplerian disk Merenyi [see talk] motion in HD142527
- Full-field primary beam models will • be developed for use in imaging software
 - Full-Mueller Mosaic Imaging with ALMA, PI Sanjay Bhatnagar [see talk]

Figure 2A: The average real and imaginary parts of DA (top row) and DV antennas (bottom row) [Kundert et al, 2016]

Figure 2B: Range of antenna-toantenna variations in PB derived from aperture illuminations shown in Fig.

Imaging with different antennas

Four Cycle 5 Studies Commenced FY2018.

UVA + NRAO

We are excellently positioned for the next generation of ALMA SIS mixers

SIS Material Systems suitable for 2nd gen ALMA

- Nb/Al-AlN/Nb (B6, B7)
- Nb/Al-AlN/NbTiN (B8-B10)
- NbTiN/AlN/NbTiN (B10)

SOI Architecture (3-5um Si chip w/beamleads)

- More accurate chip size and registration to metallization
- No time intensive lapping-thinning/dicing required
- Close to drop in chip placement in waveguide block

Miscellaneous

- Developing rapid, whole wafer, dc cryogenic probing/screening of mixer chips
- Miscellaneous circuits (superconducting RF & IF Hybrids & LO Couplers)

EU Development Program

Study Overview

Acting on the ALMA2030 vision:

- Band 2+3 (ESO, INAF, UManc, NAOJ, RAL, UChile)
 - Passive Component
 - InP MMIC LNAs for ALMA Band 2+3
 - Band 2+3 Prototype (PDR 11/17; ongoing)
- SIS Junction Technology Development (Belitsky, GARD)
- Evolution of the ALMA Observing Tool (Bridger, UKATC)
- Digitization and Digital Signal Processing for 16GHz on-sky bandwidth (Alain Baudry)
- Digital ALMA Front End (NOVA, Baryshev)
- 2SB upgrade for Band 9 (NOVA, Baryshev)
- Solar Observations (pending ALMA Memo)
- XClass/MAGIX integration in CASA
- ARTIST prototype interface

For comparison, the NRAO/CRAL Band 2+ prototype cartridge would have ~ 32 K average noise temperature, if Si-lenses were to be used.

B2+3 LNA performance (From PDR, Nov 2017)

Amplifier Type	Estimated Trx (67-90 GHz)	Notes
NRAO/CRAL	37.9 K	HDPE optics, 38.5 K Measured Average.
NRAO/CRAL (Predicted)	31.4 K	For low loss Si-lens case (if available).
LNF (Predicted)	43.9 K	HDPE optics, assumes added stage for extra gain.
Manchester (Predicted)	43.5 K	HDPE optics, assumes added stage for extra gain.

Estimates are based on noise cascade using measured amplifier noise performances.

B2+; B2+3 receiver performance (K. Saini et al 2017)

EA Development Program NACJ

Study Overview

Acting on the ALMA2030 vision:

- ALMA Calibration Source
 - Calibration at bands 3,6,7
- High Critical Current Density (Jc) SIS Junction Device Development (including Wideband RF/IF and THz devices)
- GPU Spectrometer for Total Power array (with KASI)
 - Supplements the ACA correlator
 - Separates auto-correlationfrom crosscorrelation, maintaining 32-bit quantization and eliminating re-quantization loss in the decimation.

Complete Flux Recovery using 12m+7m+TP

Immediate Future

• Projects

- Next: Follow many steps in Principles of ALMA Development,
 - Correlator Upgrade, PDR 28Feb-1Mar 2018, then to ALMA Board.
 - ALMA Band 2+ or B2+3 developing metrics for comparison.

• Studies

- New Calls every three years at ESO (2019), probably FY2019 in NA, yearly discussions in EA
- ALMA Development Roadmap:
 - The ALMA Development Working Group proposed a science-driven vision for the medium (5 years) to longer term (5 to 15 years) development of ALMA
 - Presented to ALMA Board, under discussion with science committees, international instrumental teams.

Roadmap Input

- Recommendations from the ASAC ALMA2030 report
 - Increased throughput
 - Longer baselines
 - Focal plane arrays
 - Archive development
- Numerous regional workshops in 2016 and the ALMA-wide conference in Palm Springs, CA, URSI meetings
- Numerous technical reports from the ALMA Development Program
- Further SAC input on Science Goals and long-baseline science
- Submitted by ALMA with initial feedback from the ALMA Board (November 2017), ASAC

Development Priorities

To Realize the Roadmap

- Broader IF bandwidth; upgrade components
 - Spectrometer and digitizer upgrades [see Amestica, Weintroub talks]
 - Receiver upgrades (B1, B2+, then B6/7, B3, B9) [see Morata, Noroozian talks]
 - Results:
 - Improved spectral sensitivity and coverage
 - Better continuum sensitivity
- Longer baselines, more antennas, focal plane arrays
 - Improved spectral sensitivity and imaging
 - Wide field imaging
 - Beyond basic Development

Proposed New Science Drivers

Origins of Galaxies

Follow the cosmic evolution of key bio-elements from the beginning of galaxy formation (z>6) through the peak of star formation (z=2-4) by imaging key cooling lines, both atomic ([CII], [OIII]) and molecular (CO), at a rate of 1-2 galaxies per hour.

Origins of Chemical Complexity

 Trace the evolution from simple to complex organic molecules through the process of star and planet formation down to 10 au scales by performing full-band frequency scans at a rate of 2-4 forming Sun-like stars per day.

Origins of Planets

Image planet formation in the dust continuum in nearby (150 pc) protoplanetary disks to resolve the Earth forming region (~1 au) at wavelengths shorter than 1mm and the Jovian-planet region (~3–10 au) at 3–10 mm.

Increase Bandwidth and Throughput

- Goal
 - Increase IF bandwidth to ≥ 8 GHz and upgrade the associated electronics, correlator, and archive
 - Directly impacts all three science drivers
- Recommendations
 - Bands 7, 6, 3, and 9 have priority, with Bands 7 and 6 deemed to have equal priority
 - Technical and scientific working group should be formed to produce top-level requirements
 - Technical working group should be formed to flow down top-level requirements to all aspects of the system
 - A team should be developed to coordinate developments over entire system

Longer Baselines? Workshop Oct 2017

- Goal
 - Expand baseline lengths by a factor of 2-3
 - Directly impacts Disks & Planets science driver
- Recommendations
 - Science appears compelling, but simulations are needed to inform technical requirements
 - Studies are needed to assess technical and operational feasibility
 - Extension to ~26 km may be fairly straightforward (N. Phillips)

uv coverage: C43-10, $\delta = -40^{\circ}$, HA -4h to +4h

30

Possible ~26km Array

(B1~B7; Phillips)

To 50 km? T. Saito study)

- ALMA with 50km Baselines?
 - Severely limited by topography!
 - Could operate to at least 300 GHz
 - Assume 8 GHz bandwidth
 - Add Nine Fixed 12m antennas on 50km baselines
 - Could achieve 5-15 mas resolution in 9 hour full synthesis images

AtLAST

 Atacama Large-Aperture Submm/mm Telescope (AtLAST)

ESO-HQ, Garching b. München, Germany
January 17-19, 2018

USNRSM 2018

Magnetic Fields or Turbulence: Which is the critical factor for the formation of stars and planetary disks?

- 6-9 Feb 2018, National Tsing Hua University, Hsinchu, Taiwan
- Discussions on all aspects of star and planetary disk formation, such as
 - Magnetic field and turbulence measurements
 - Molecular cloud structure and dynamics
 - Formation of protoplanetary disks
 - Chemical contents of molecular cores and disks
 - Star formation efficiency
- http://events.asiaa.sinica.edu.tw/workshop/20180206/index.php

USNRSM 2018

New Horizons in Solar Systems

A Joint NAASC-NRC Conference Victoria, BC, May 2019

National Research Conseil national de council Canada recherches Canada

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Frequency (MHz)

- Many CO isotopomers fall within a part of the Herschel HEXOS spectral scan in a portion of ALMA Band 9 (611-720 GHz) showing the spectral grasp of the current baseline correrlator (8 GHz x 2 polarizations) compared to that from the upgraded correlator (2 x 8GHz x 2 polarizations). From Tahani et al. 2016.
- For high resolution, ALMA's current configuration provides 58 MHz spectral windows, only ~70 km/s at 300 GHz. With the correlator upgrade, one could achieve the same resolution over ~550 km/s.

