A Study of the Compact Water Vapor Radiometer for the Karl G. Jansky Very Large Array

By: Ajay Gill Supervisor: Robert Selina

Team: Bryan Butler, James Jackson, Wes Grammer, Rick Perley,

Craig Hennies, Wayne Koski, George Peck, Brent Willoughby, Matt Morgan Acknowledgment: NRAO Graduate Summer Research Assistantship Program

Carilli & Holdaway (1999), Desai (1993), Thompson, Moran, & Swenson (2001)

Water Vapor Radiometry

- WV → Continuum & Line Emission, T_{sky}
- $\Delta WV \longrightarrow \Delta T_{sky} \propto \Delta \phi_{astro} \longrightarrow Empirical Correction Factor$

Z

- Liquid water ----- Continuum
- Observe 22 GHz WV line

- Channels at line & away from line
- Distinguish liquid water & WV

Objectives

4

- Characterize CWVR prototype in lab
- Gain stability
- Temperature stability
- Channel isolation
- Dynamic range
- Pathfinder to evaluate WVR for EVLA and ngVLA

Z

Instrument Setup

Ż

• Gain Stability Requirements (4 Channels)

•
$$\Delta T \propto \Delta P_{in} = w_2 P_2 + w_3 P_3 + w_4 P_4 + w_5 P_5$$

- $w_2 = -0.5$, $w_3 = 1$, $w_4 = -0.5$, $w_5 = 0.25$
- ~ 35 μ m of WV \longrightarrow 220 μ m of electrical path delay (λ /30 for λ = 7 mm)
- For $\Delta T_{rms} \sim 25$ mK, $T_{i,rms} \sim 20$ mK
- For T_{sys} = 50 100 K and τ = 2.5 10 3 seconds

- Channel Isolation Requirements (4 Channels)
 - ~ 20 dB
 - ~ 1% power leakage between any two channels

Dynamic Range

NRAO Associated

V.

Channel Isolation Values

•
$$IS_{xy} = \frac{\int_{\nu_i}^{\nu_f} P_x(\nu) P_y(\nu) d\nu}{\int_{\nu_i}^{\nu_f} P_y(\nu) d\nu}$$

where IS_{xy} is leakage of x into y

IS ₁₂ (dB)	IS ₁₃ (dB)	IS ₁₄ (dB)	IS ₁₅ (dB)
-25.09	-30.79	-29.25	-32.38
IS ₂₁ (dB)	IS ₂₃ (dB)	IS ₂₄ (dB)	IS ₂₅ (dB)
-27.42	-22.90	-26.10	-27.72
IS ₃₁ (dB)	IS ₃₂ (dB)	IS ₃₄ (dB)	IS ₃₅ (dB)
-31.99	-21.78	-20.25	-25.46
IS ₄₁ (dB)	IS ₄₂ (dB)	IS ₄₃ (dB)	IS ₄₅ (dB)
-31.15	-25.67	-20.95	-22.74
IS ₅₁ (dB)	IS ₅₂ (dB)	IS ₅₃ (dB)	IS ₅₄ (dB)
-32.34	-25.35	-24.22	-20.81

Associated Universities in:

Associated Universities in

Associated Universities inc

Associated Universities inc

Channel 2 - 5 Counts over 64 hr with Input Broadband Noise Diode

NRAO Associated

Associated

NRAO Associated

Temperature Correction

Associated Universities in:

Stability with Temperature Correction

Summary

- Phase fluctuations limit resolution and sensitivity
- CWVR prototype tested in lab
- Gain and temperature stability requirement met
- Channel isolation requirement met
- Correlation between temperature and gain
- Temperature correction improves stability
- EVLA Memo 203

Future

- Build and install four CWVRs for further on-sky testing
- Evaluate use of WVR for EVLA and ngVLA

References

- 1. Butler, B., Some Issues for Water Vapor Radiometry at the VLA, VLA Scientic Memo # 177, 1999.
- 2. Carilli, C. L, and Holdaway, M. A, Tropospheric phase calibration in millimeter interferometry, *Radio Science*, vol. 34, no. 4, pp. 817-840, 1999.
- 3. Chandler, C. J, Brisken, W. F, Butler, B. J, Hayward, R. H, M., Willoughby, B. E, Results of Water Vapor Radiometry Tests at the VLA, EVLA Memo # 73, 2004.
- 4. Chandler, C. J, Brisken, W. F, Butler, B. J, Hayward, R. H, Morgan, M., Willoughby, B. E, A Proposal to Design and Implement a Compact Water Vapor Radiometer for the EVLA, EVLA Memo # 74, 2004.
- 5. Clark, B., Calibration Strategies for the Next Generation VLA, ngVLA Memo # 2, 2015.
- 6. Desai, K., Measurement of turbulence in the interstellar medium, Ph.D. thesis, 89 pp., Univ. of Calif. at Santa Barbara, 1993.
- 7. Holdaway, M. A., Possible phase calibration schemes for the MMA, Millimeter Array Memo. 84, 14 pp., Natl. Radio Astron. Obs., Socorro, N. M., 1992.
- 8. Thompson, A. R, Moran, J. M, Swenson Jr., G. W, *Interferometry and Synthesis in Radio Astronomy*, Second Edition, 2001, John Wiley & Sons.
- 9. Sutton, E. C., and Hueckstaedt, R. M., Radiometric monitoring of atmospheric water vapor as it pertains to phase correction in millimeter interferometry, Astron. Astrophys. Suppl. Ser., 119, 559-567, 1997.

Thank you.

Extra Slides

Allan Standard Deviations

$$\sigma_{P}(\tau) = \left\{ \frac{1}{2} \left\langle \{P(t) - P(t - \tau)\}^{2} \right\rangle \right\}^{\frac{1}{2}}$$

$$\sigma_{P}(\tau) = \left\{ \frac{1}{2} \sum_{j=1}^{N/2} \frac{1}{N - \tau_{j}} \sum_{i=1}^{N - \tau_{j}} \left[P(t_{i} + \tau_{j}) - P(t_{i}) \right]^{2} \right\}^{\frac{1}{2}} \text{ and } \mu_{norm} = \langle P(t) \rangle$$

$$\sigma_{P_{x} - P_{y}}(\tau) = \left\{ \frac{1}{2} \sum_{j=1}^{N/2} \frac{1}{N - \tau_{j}} \sum_{i=1}^{N - \tau_{j}} \left\{ \left[P_{x}(t_{i} + \tau_{j}) - P_{y}(t_{i} + \tau_{j}) \right] - \left[P_{x}(t_{i}) - P_{y}(t_{i}) \right] \right\}^{2} \right\}^{\frac{1}{2}} \text{ and } \mu_{norm} = \frac{\langle P_{x}(t) + P_{y}(t) \rangle}{2}$$

$$\sigma_{\Delta P_{in}}(\tau) = \left\{ \frac{1}{2} \sum_{j=1}^{N/2} \frac{1}{N - \tau_j} \sum_{i=1}^{N - \tau_j} \left\{ \sum_{k=1}^{5} w_k P_k(t_i + \tau_j) - \sum_{k=1}^{5} w_k P_k(t_i) \right\}^2 \right\}^{\frac{1}{2}} and \ \mu_{norm} = \frac{\langle P_1(t) + P_2(t) + P_3(t) + P_4(t) + P_5(t) \rangle}{5}$$

TORONTO

Channel 2 - 5 Counts over 64 hr with Input Broadband Noise Diode

UNIVERSITY OF TORONTO

Instrument Setup

Voltage – Frequency Converter

10 Hz Calibration Signal

V-F Board Frequency Output

TORONTO

 $V_{out} = 0 - 10 V \leftrightarrow v_{out} = 0 - 2 MHz$

Ch1_{Low,High} = $\frac{802.1 \times 10^3 \text{ cycles}}{\text{sec}} \times 50 \text{ ms} \times \frac{1 \text{ sec}}{10^3 \text{ ms}} \sim 40,000 \text{ cycles or counts}$

 $Ch1_{Total} = Ch1_{Low} + Ch1_{High} \sim 80,000$ cycles or counts

Relative Allan Standard Deviations for Channel 5 for t = 105.4 min, τ = 52.7 min

UNIVERSITY OF TORONTO Q Associated Universit

• Gain Stability Requirements (5 Channels)

•
$$\Delta T \propto \Delta P_{in} = w_1 P_1 + w_2 P_2 + w_3 P_3 + w_4 P_4 + w_5 P_5$$

•
$$w_1 = 0.25$$
, $w_2 = -0.5$, $w_3 = 1$, $w_4 = -0.5$, $w_5 = 0.25$

- ~ 35 μ m of WV \longrightarrow 220 μ m of electrical path delay (λ /30 for λ = 7 mm)
- For $\Delta T_{rms} \sim 25$ mK, $T_{i,rms} \sim 19.612$ mK
- For T_{sys} = 50 100 K, τ = 2.5 10^3 seconds

- Channel Isolation Requirements (5 Channels)
 - ~ 20 dB
 - ~ 1% power leakage between any two channels

TORONTO

	v (low) (GHz)	v (center) (GHz)	v (high) (GHz)	Δv (GHz)
Ch1	18.5	19.25	20	1.5
Ch2	20.625	21	21.375	0.75
Ch3	21.75	22.25	22.75	1
Ch4	23.125	23.5	23.875	0.75
Ch5	24.5	25.25	26	1.5

Chandler et al (2004)

Carilli & Holdaway (1999)

$$Count_{corr,i} = \begin{cases} Count_i & \text{for } i = 1, 2, 3, ..., n \\ Count_i - A(T_{sm,i} - T_{ave}) & \text{for } i = n + 1, n + 2, ..., N \end{cases}$$
(23)

$$T_{ave} = \frac{1}{n} \sum_{i=1}^{n} T_i \tag{24}$$

$$T_{sm,i} = \frac{1}{n} \sum_{j=i-n}^{i} T_j \tag{25}$$

where A = -405, $Count_{corr,i}$ is the temperature corrected count at point *i*, $Count_i$ is the measured count at point *i*, T_{ave} is the mean of the CWVR ambient temperature for the first *n* seconds of a *N*-second total observation time, $T_{sm,i}$ is the temperature at point *i* taken as the mean from the preceding *n* seconds to point *i*, and T_j is

AD590, TCS620 (Cold Plate)

