



## Towards the ICRF3: Comparing USNO 2016A VLBI Global Solution to Gaia and ICRF2

Megan Johnson

in collaboration with Julien Frouard, Alan Fey, Valeri Makarov, and Bryan Dorland

6 January 2018







- Introduction
- USNO 2016A Global Solution
  - Comparison to ICRF2
  - Comparison to GAIA DR1
- Results
- Future Prospects
- Conclusions



International Celestial Reference Frame (ICRF)



- A brief history...
  - The first realization (ICRF1) adopted by IAU on 1 January 1998 as the fundamental celestial reference frame replacing FK5 optical frame (Fricke+ 1988)
  - ICRF1 contained Very Long Baseline Interferometry (VLBI) positions of a total of 608 compact radio sources
    - Geodetic/astrometric data obtained from August 1979 through July 1995
    - Simultaneous observations made at S- and X-bands using a dichroic
    - 212 "defining" compact radio sources independent of equator, equinox, ecliptic, and epoch
  - 2 extensions added another 109 sources (Fey+ 2004)
    - Some sources from the VLBA Calibrator Survey (VCS) (Beasley+ 2002)



ICRF-Ext. 1 Catalog



Right Ascension(J2000)

VLBA Calibrator Survey (VCS1)



Right Ascension(J2000)

FIG. 1.—Equal-area projection of celestial distribution of ICRF-Ext. 1 (667 sources, *top*) and VCS1 catalogs (1332 sources, *bottom*).

Beasley+ 2002





- Current International Celestial Reference Frame, ICRF2 (Fey et al. 2015)
  - Radio Astrometry catalog of 3414 radio loud quasars, Active Galactic Nuclei (AGN)
    - 295 Defining Sources
    - 2197 VLBA Calibrator Survey (VCS) sources
    - 922 non-VCS sources
  - Accuracy floor of ~40 μas for the whole dataset
  - -Not all sources have same astrometric quality!
    - VCS sources only observed 1 time!
    - Wide range of accuracies





- Global solution includes data from the onset of VLBI in August 1979 through the present
- VLBI observations at 13 and 3.6 cm simultaneously
  - Accurate calibration of Earth's ionosphere
  - Least-squares analysis over multiple channels in each band for precise group delay
  - CALC/SOLVE software used for source position derivation (see Ma et al. 1986)
- U16A solution contains 4129 sources
  - 295 defining sources
  - 2195 VCS sources
  - -921 non-VCS sources
  - -718 new sources





- Improved astrometric accuracy over ICRF2
  - Increased number of observations for VCS sources

















 Using Gaia Auxiliary Quasar Solution (AQS; Mignard+ 2016) to understand offset between U16A and ICRF2







Using Gaia AQS to understand offset between U16A and ICRF2









|                |                 | 262 defining |            | 1289  VCS |              | 640  Non-VCS |             | 2191 sources |              |
|----------------|-----------------|--------------|------------|-----------|--------------|--------------|-------------|--------------|--------------|
| U16A-Gaia AQS  | $RA^*\cos(Dec)$ | -104         | (-277, 12) | -108      | (-169, -27)  | -171         | (-254, -83) | -121         | (-173, -76)  |
|                | Dec             | 77           | (11, 148)  | -32       | (-90, 30)    | 36           | (-11, 91)   | 13           | (-31, 48)    |
|                | Absolute Offset | 584          | (489, 652) | 1009      | (938, 1073)  | 897          | (796, 991)  | 916          | (865, 961)   |
| ICRF2-Gaia AQS | $RA^*\cos(Dec)$ | -84          | (-199, 10) | -4        | (-109, 98)   | -113         | (-221, -39) | -62          | (-124, 3)    |
|                | Dec             | 135          | (88, 236)  | 25        | (-74, 86)    | 108          | (30, 176)   | 69           | (29, 111)    |
|                | Absolute Offset | 601          | (491, 666) | 1346      | (1325, 1551) | 950          | (818, 1034) | 1159         | (1097, 1225) |

Table 3. Median differences in position in the sense U16A-Gaia AQS and ICRF2-Gaia AQS, in  $\mu$ as, with bootstrap BC<sub>a</sub> confidence intervals with 95% coverage.









|                         | 262 Defining       | 1289 VCS             | 640 Non-VCS          | 2191 sources         |
|-------------------------|--------------------|----------------------|----------------------|----------------------|
| Offset U16A - Gaia AQS  | 0.51 (-0.83, 1.90) | -3.00 (-4.44, -1.59) | -1.75 (-3.39, -0.29) | -1.49 (-2.40, -0.59) |
| Offset ICRF2 - Gaia AQS | 0.29 (-1.09, 1.75) | -7.09 (-9.54, -4.75) | -1.87 (-3.51, -0.35) | -2.39(-3.63, -1.19)  |

Table 5. The slope of the absolute offsets with the declination, in  $\mu$ as.deg<sup>-1</sup>. The slope and the 95% coverage confidence intervals (indicated between parenthesis) are determined with the Thiel-Sen method (Theil 1950; Sen 1968).























|                  | $l_{max}$ | $N_{sources}$ | Rotation     |             |                    | Glide               |             |                 |  |
|------------------|-----------|---------------|--------------|-------------|--------------------|---------------------|-------------|-----------------|--|
|                  |           |               | х            | У           | $\mathbf{Z}$       | х                   | У           | $\mathbf{Z}$    |  |
| U16A - ICRF2     | 2         | 2433          | $-4 \pm 5$   | -11 $\pm$ 5 | $1\pm3$            | $-19\pm4$           | $-32\pm4$   | $-71\pm4$       |  |
| U16A - GAIA AQS  | 1         | 1794          | -35 $\pm$ 14 | $-53\pm12$  | $\textbf{-3}\pm13$ | $\textbf{-28}\pm13$ | $61 \pm 13$ | $\bf 77 \pm 12$ |  |
| ICRF2 - GAIA AQS | 1         | 1728          | $-46 \pm 17$ | $-57\pm15$  | $14{\pm}~16$       | $-22 \pm 16$        | $88 \pm 16$ | $153\pm14$      |  |

Table 7. Components of the global rotation and glide between the catalogs, in  $\mu$ as. The bold font denote the values with a 3-sigma significance.



 Out of 718 new sources in U16A, 415 matches within 150 mas of Gaia sources





## • PanSTARRS DR1 images can help explain offset sources







- ICRF3 will debut at upcoming IAU general assembly
- Going forward with VLBA...
  - -Radio astrometry measurements key to maintaining ICRF
  - Source structure studies currently underway
  - Higher frequencies, i.e., Ka-band, allow for more compact source structure detections
  - Wide bandwidth capabilities could transition to more accurate phase delay measurements





- U16A has source position offsets of ~0.1 mas when compared to ICRF2
- U16A global solutions are statistically more inline with Gaia than ICRF2
- Systematic differences between ICRF2 and U16A? Those might be caused by observations from some of the AUST stations, from 2010 onwards
- 718 new radio sources in U16A
  - Gaia contains 415 matches within 150 mas; 22 of these are outliers
  - 10 out of 22 optical-radio offset sources can be explained when compared to PanSTARRS optically resolved images
- Future prospects for potentially higher frequencies and wide bandwidth capabilities on VLBA