
1 Jan. 6th, 2018-URSI NRSM

VLBI in the Age of Fermi and Gaia
Frank Schinzel (NRAO), Leonid Petrov
(Astrogeo)



2 Jan. 6th, 2018-URSI NRSM

10 years of the Fermi Gamma-ray Space Telescope 

• Launched: June 2008; Two instruments: 
Large Area Telescope (LAT) & Gamma-ray Burst Monitor (GBM)

• Imaging gamma-ray detector (pair-conversion)/20 MeV – 300 GeV
• FOV ~20% of the sky
• default: full sky observed every 3 hours

J. Ballet (2017)
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AGN dominate the γ-ray sky

>1100	(36%)	are	AGN	out	of	3033	γ-ray	objects	found	integrating	four	years
Acero et	al.	(2015)

3FGL	– 4	year	catalog
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Emission	from	AGN

Emission	Mechanisms:
• Leptonic:	SSC,	EC
• Hadronic:	p-p,	etc.
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3C345: γ-ray vs radio

• Trends	of	jet	radio	and	optical	
flux	density	evolution	correlate	
with	γ-rays.

• <=0.3	mas	(∼	36	pc	from	the	BH)	
from	the	43	GHz	core	dominated	
by	inverse	Compton	losses.
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3C345: γ-ray vs radio
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Distances	calculated	under	the	assumption	of	interaction	of	moving	with	
stationary	features	in	the	jet,	producing	γ-ray	flares	during	passage.

Predicts	stationary	jet	features	at	the	location	of	the	“core”,	S1,	and	S2.
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3C345: GMVA Image

Confirms	existence	of	predicted	triple	structure,	D,	S1,	and	S2!
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Marti-Vidal,	...,	Schinzel,	et	al.	(2012)
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3FGL

33% of detected 
point sources have 
no known  multi-
wavelength 
counterpart

L. Hays
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Attempts to find counterparts

• Search for Pulsar counterparts 
(radio, gamma-ray data)
e.g. Pleunis et al. (2017), Frail et al. (2017)

• Mining existing catalogs (WISE, NVSS, FIRST etc.)
e.g. Maselli et al. (2013), Massaro et al. (2012)

• Machine Learning
e.g. Saz Parkinson et al. (2016)

• Radio surveys (VLA, VLBA, ATCA, LBA, ALMA, 
SPT)
e.g. Petrov et al. (2015), Schinzel et al. (2017), Giroletti et al. (2015)
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VLBI + γ-ray -> new γ-ray loud AGN
Based on the distribution of known VLBI detected, γ-ray loud AGN 
we can derive a statistical likelihood that a detected mas-scale 
object is associated with a γ-ray source with arcmin localization.

Observation Program:
– ATCA & VLA 5-10 GHz observations of *every* 

unassociated 
γ-ray source

– VLBI follow-up of VLA/ATCA detected radio sources

In	2012:	
Catalogs	incomplete/flux	limited	for	compact	
sources	 <180	mJy	at	8	GHz.	

About	7000	objects	with	mas	scale	emission	
known,	almost	all	AGN.	
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VLBI + γ-ray -> new γ-ray loud AGN

Results:
– ~2 VLBI targets per  γ-ray field
– Added >200 new AGN associations 

(about same number as identified gamma-ray Pulsars) 
>50% of gamma-ray sources have a VLBI counterpart!

– Found association candidates for Pulsars, Supernova 
Remnants/HII regions

Fermi Catalog Associated AGN Unassociated Share
2FGL	(2	yrs) 1054 819	 56%
3FGL	(4	yrs) 1584 1423	 52%
4FGL (7	yrs) 2175 3005 (>)42%

References:	Petrov et	al.	(2013,	2015)	,	Schinzel et	al.	(2015,	2017)
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Summary Fermi
• 1/3 of gamma-ray point sources are unassociated
• Expand radio/gamma-ray association work to 7-year catalog (~1700 

target fields) -> VLA observations underway

• VLBA+Fermi provide a dynamic view into jet physics
major programs: 
– MOJAVE (Lister et al.) 
– BU Blazar monitoring program (Marscher et al.)
– TeV BL Lac monitoring (Piner et al.)

• VLBA plays a crucial role in associating gamma-ray loud AGN!
• VLBA has been one of the most important (and one of the 

least recognized) observatories for the physical interpretation 
of gamma-ray emission from AGN! 
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State of absolute astrometry by 01/01/2018
The state-of-the art catalog: the Radio Fundamental Catalogue

# sources: 14786

Percentile of accuracy: Contributors:

20% <	0.30	mas

50%	(median) <	0.90	mas

80% <	2.50	mas

90% <	5.20	mas

94.8% < 10.0	mas

VLBA: 87%
LBA: 8%

CVN: 4%

IVS: 1%

Flux density @ X-band: [0.003, 22] Jy, median: 101 mJy

Results of ongoing dedicated VLBI absolute astrometry programs for 27000 sources
since 1997 using over 8000 hours.

56,811 images of 9311 compact radio sources were generated
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The number of matches of the RFC:

γ-ray Fermi 15%
X-ray Chandra 3%
infra-red WISE 74%
infra-red 2MASS 36%
optic Gaia 52%
optic PanSTARRS 69%	(78%	at	δ >	-30°)
optic known	redshifts 42%
radio NVSS 91% (99.8%	at	δ >	-40°)
radio TGSS 72%	(76%	at	δ >	-53°)
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VLBI Radio Fundamental Catalogue (14,786 sources) on 
01/01/2018 and Gaia DR1 (1.14·109 objects)

Green:
7,716 VLBI/Gaia matches (P<0.0002)

Blue: VLBI sources without Gaiamatches
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VLBI/Gaia offsets favor direction along the jet!

Mean systematic contribution: 1-2 mas

Explanation: presence of an optical jet at mas scales

Why VLBI and Gaia give different AGN positions?

Gaia minus VLBI offset = position of the centroid wrt the compact detail

Gaia VLBI
Records: power voltage

Position	of	an	extended	source centroid the	most	compact	detail
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What will happen if one of the components 
becomes brighter?

Prediction: Gaia centroid will jitter.
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Direction of the centroid change after a 
flare

• Flare happened in the jet

• Flare happened at the accretion disk

• Flare happened at the core or accretion disk

• Flare happened at the core of the jet

Analysis of Oj time series will allow us 
to answer the question where the flare occurred
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Summary Gaia
• VLBI/Gaia residuals have systematic caused by core-jet morphology;
• VLBI position is related to the most compact detail, an AGN core;
• Gaia position is related to the image centroid within the PSF;
• The most plausible explanation: optical jet at scales 1-200 mas;
• Consequences of the optical jet presence: source position jitter;
• Position jitter + light curve = optical resolution at mas scale;
• VLBI + Gaia -> we can determine the region of optical flares, its 

kinematics, and its flux density

References: arxiv.org/abs 1611.02630, 1611.02632, 1704.07365
RFC preview:  http://astrogeo.org/rfc
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Looking Ahead
• Short-term (VLBA)

wider bandwidths, higher data rates -> increase sensitivity
Benefit: All areas, especially AGN monitoring at high freq.

and Gaia <-> VLBI comparison of radio-quiet AGN

• Mid-term (eVLBA)
Real-time VLBI -> decrease response times
Benefit: Rapid follow-up and feedback for e.g. gamma-ray & 
optical flares

• Long-term (ngVLA)
filling in the uv-plane (baselines from 1000 km to a few km closing 
the 30-300 km gap) 
Benefit: All areas, better resolve spatial structure, 
increase sensitivity at the highest frequencies (3mm)
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