

VLBI in the Age of Fermi and Gaia Frank Schinzel (NRAO), Leonid Petrov (Astrogeo)

10 years of the Fermi Gamma-ray Space Telescope

- Launched: June 2008; Two instruments:
 Large Area Telescope (LAT) & Gamma-ray Burst Monitor (GBM)
- Imaging gamma-ray detector (pair-conversion)/20 MeV 300 GeV
- FOV ~20% of the sky
- default: full sky observed every 3 hours

>1100 (36%) are AGN out of 3033 γ-ray objects found integrating four years

Emission from AGN

- Trends of jet radio and optical flux density evolution correlate with γ-rays.
- <=0.3 mas (~ 36 pc from the BH) from the 43 GHz core dominated by inverse Compton losses.

3C345: γ-ray vs radio

Distances calculated under the assumption of interaction of moving with stationary features in the jet, producing γ-ray flares during passage.

Predicts stationary jet features at the location of the "core", S1, and S2.

3C345: GMVA Image

Confirms existence of predicted triple structure, D, S1, and S2!

3FGL

Jan. 6th, 2018-URSI NRSM

Attempts to find counterparts

- Search for Pulsar counterparts (radio, gamma-ray data)
 e.g. Pleunis et al. (2017), Frail et al. (2017)
- Mining existing catalogs (WISE, NVSS, FIRST etc.) e.g. Maselli et al. (2013), Massaro et al. (2012)
- Machine Learning e.g. Saz Parkinson et al. (2016)
- Radio surveys (VLA, VLBA, ATCA, LBA, ALMA, SPT)

e.g. Petrov et al. (2015), Schinzel et al. (2017), Giroletti et al. (2015)

VLBI + γ -ray -> new γ -ray loud AGN

Based on the distribution of known VLBI detected, γ -ray loud AGN we can derive a statistical likelihood that a detected mas-scale object is associated with a γ -ray source with arcmin localization.

Observation Program:

- ATCA & VLA 5-10 GHz observations of *every* unassociated
 - γ-ray source
- VLBI follow-up of VLA/ATCA detected radio sources

In 2012:

Catalogs incomplete/flux limited for compact sources <180 mJy at 8 GHz.

About 7000 objects with mas scale emission known, almost all AGN.

VLBI + γ -ray -> new γ -ray loud AGN

Results:

- ~2VLBI targets per γ-ray field
- Added >200 new AGN associations
 (about same number as identified gamma-ray Pulsars)
 >50% of gamma-ray sources have a VLBI counterpart!
- Found association candidates for Pulsars, Supernova Remnants/HII regions

Fermi Catalog	Associated AGN	Unassociated	Share
2FGL (2 yrs)	1054	819	56%
3FGL (4 yrs)	1584	1423	52%
4FGL (7 yrs)	2175	3005	(>)42%

References: Petrov et al. (2013, 2015), Schinzel et al. (2015, 2017)

Summary Fermi

- 1/3 of gamma-ray point sources are unassociated
- Expand radio/gamma-ray association work to 7-year catalog (~1700 target fields) -> VLA observations underway
- VLBA+Fermi provide a dynamic view into jet physics major programs:
 - MOJAVE (Lister et al.)
 - BU Blazar monitoring program (Marscher et al.)
 - TeV BL Lac monitoring (Piner et al.)
- VLBA plays a crucial role in associating gamma-ray loud AGN!
- VLBA has been one of the most important (and one of the least recognized) observatories for the physical interpretation of gamma-ray emission from AGN!

State of absolute astrometry by 01/01/2018

The state-of-the art catalog: the Radio Fundamental Catalogue

sources: 14786

Percentile of accuracy:

20%	< 0.30 mas		
50% (median)	< 0.90 mas		
80%	< 2.50 mas		
90%	< 5.20 mas		
94.8%	< 10.0 mas		

Contributors:

VLBA:	87%
LBA:	8%
CVN:	4%
IVS:	1%

Flux density @ X-band: [0.003, 22] Jy, median: 101 mJy

Results of ongoing dedicated VLBI absolute astrometry programs for 27000 sources since 1997 using over 8000 hours.

56,811 images of 9311 compact radio sources were generated

The number of matches of the RFC:

γ-ray	Fermi	15%
X-ray	Chandra	3%
infra-red	WISE	74%
infra-red	2MASS	36%
optic	Gaia	52%
optic	PanSTARRS	69% (78% at $\delta > -30^{\circ}$)
optic	known redshifts	42%
radio	NVSS	91% (99.8% at $\delta > -40^{\circ}$)
radio	TGSS	72% (76% at $\delta > -53^{\circ}$)

Jan. 6th, 2018-URSI NRSM

VLBI/Gaia offsets favor direction along the jet!

Mean <u>systematic</u> contribution: I-2 mas

Explanation: presence of an optical jet at mas scales

Why **VLBI** and *Gaia* give different AGN positions?

	Gaia	VLBI
Records:	power	voltage
Position of an extended source	centroid	the most compact detail

Gaia minus **VLBI** offset = position of the centroid wrt the **compact detail**

What will happen if one of the components becomes brighter?

Prediction: Gaia centroid will jitter.

Direction of the centroid change after a

Analysis of O_j time series will allow us to answer the question where the flare occurred

Jan. 6th, 2018-URSI NRSM

Summary Gaia

- VLBI/Gaia residuals have systematic caused by core-jet morphology;
- VLBI position is related to the most compact detail, an AGN core;
- Gaia position is related to the image centroid within the PSF;
- The most plausible explanation: optical jet at scales 1-200 mas;
- Consequences of the optical jet presence: source position jitter;
- Position jitter + light curve = optical resolution at mas scale;
- VLBI + Gaia -> we can determine the region of optical flares, its kinematics, and its flux density

References:arxiv.org/abs1611.02630, 1611.02632, 1704.07365RFC preview:http://astrogeo.org/rfc

Looking Ahead

• Short-term (VLBA)

wider bandwidths, higher data rates -> increase sensitivity Benefit: All areas, especially AGN monitoring at high freq. and Gaia <-> VLBI comparison of radio-quiet AGN

Mid-term (eVLBA)

Real-time VLBI -> decrease response times Benefit: Rapid follow-up and feedback for e.g. gamma-ray & optical flares

Long-term (ngVLA)

filling in the *uv*-plane (baselines from 1000 km to a few km closing the 30-300 km gap) Benefit: All areas, better resolve spatial structure, increase sensitivity at the highest frequencies (3mm)

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

