21 cm EoR Power Spectrum Analyses of 3c196 Flanking field

Galaxy Evolution

Nivedita Mahesh, André Offringa

On behalf of the LOFAR collaboration

Probing High redshift 21 cm

Understanding EoR window

K₁ (F.T of Image plane)/ Baseline

Project Goals

- 1. Automated technique for effective foreground removal
- 2. Test the suitability of the flanking field for EoR Power spectrum.

APPROACH:

- \succ Use the 3c196 Flanking field to:
 - Make image of the sky
 - Model the foregrounds
 - Perform calibration & Imaging
- ➤ Make power spectra from the image cube
- \succ Analyse the field using the power spectra

3c196 Flanking field

- > Actual 3c196 field was observed in the multi-beam mode with the HBA
- Adjacent field was chosen because of the center unresolved source ease of calibration
- The available 96 MHz bandwidth was split between the main beam and the flanking field as 64 & 32 MHz.
- \succ So this field has 32 MHz (114-145 MHz) \Rightarrow 2 redshift bins

DATA Overview:

Each Suband -> 4 to 59 (Solving PFB aliasing) \Rightarrow 56 channels /14 = 4 (Averaging) Bandwidth -> 0.042 * 4 = 0.171 MHz Time resolution -> 5393 * 4 ~ 6 hours

3c196 Flanking field

Calibration

Calibration was tested on one sub band first (127 MHz)

	4C 52.18 Flux (Jy)	4C 52.18 flux (Jy)	87GB 0818 flux (Jy)	3C196 Flux (Jy)	J082433 Flux(Jy)	87GB 81317 Flux(Jy)
Modelled using PyBDSM	11.50	12.42	1.59	95.97		
Modelled using FIRST	10.48	11.14	1.54	89.31		
Expected Flux	9.18	9.26	1.28	88.40	1.534	1.361
3c196 Flux *0.80	8.89	9.65	1.32	75.98		
Above model + more sources	8.91	9.39	1.31	76.87	1.462	1.347

Sky model Effectiveness

- The flux scale of the sources were close to the expected.
- RMS background noise ~ 13.14mJy for one sub-band
- The residue of the center source after subtraction = -52mJy

Analysing the image cube

Full Jones Matrix calibration

Analysing the image cube

Image slice @ m=0 for stokes V

Diagonal Calibration in NDPP calibrates X & Y antennas independently \Rightarrow they are referenced to different phases

Analysing the pstransform plots

No Minuv clipping in Pstransform

Analysing the pstransform plots

Minuv clipped to 70 in Pstransform

117 - 129 MHz (12MHz)

z bin: 10.02 - 11.12

No Source removal

6 source removal

Spherical Power spectrum

The 6 bright sources gave the first big improvement in power reduction

Sagecal with the concatenated skymodel did well which was previously not seen with the main 3c196 field.

Trying Gaussian Process Regression

SUMMARY

- ★ The new hybrid approach of extracting sources manual modelling + wsclean extraction worked quite well.
- \star The 3c196 flanking field does look promising with:
 - Power reduction using sage cal
 - Some foreground removal with GPR.

Work in Progress:

- > Calibration with more sources
- \succ Improve the foreground models
- \succ Run sagecal with more sources
- \succ Investigate the power spectra with GPR foreground removal.

AST (RON Netherlands Institute for Radio Astronomy

Thank You!

Backup Slides

Spherical Power spectrum

The 6 bright sources gave the first big improvement in power reduction

Sagecal with the concatenated skymodel did well which was previously not seen with the main 3c196 field.

Comparing GPR & Pstransform

Spherical Power spectrum

Just the Wsclean model did as well as the concatenated model

Probing High redshift 21 cm

Signal Element approach Globally averaged temperature

 $\rm T_b \propto (T_S/T_{cmb} \text{--} 1) \ X_H$

Overview of the Program

Overview of the Program

Pancake part

Why Reionization?

Thermal history of the universe requires it:

– Expansion and adiabatic cooling implies recombination of the IGM at $z \sim 1100$.

97% of the IGM now is ionized

– Transmission of UV light from nearby quasars requires a largely ionized IGM at

 $z \sim 0$ (indeed, up to $z \sim 6$)

Probes of EoR

- > Lyman α Forest in High redshift Quasars (Gunn-Peterson Effect)
- > CMB Polarization
- > 21cm Hydrogen spin flip

Physics of EoR

Probing the re-ionized regions using the 21cm signal from the neutral hydrogen

Comparing Frequency Ranges

117 - 123 MHz (6MHz)

117 - 129 MHz (12MHz)

z bin: 10.02 - 11.12

z bin: 10.56 - 11.12

Pixel resolution Vs beam resolution

Beam size = 28" pixel = 20"

Beam size = 39.46" pixel = 10"

Beam size = 39.16" pixel = 20"

Current Interferometer Experiments

Comparing Gaussian Process Regression & Polynomial fit

Vertical cut along the cylindrical averaged Power spectra.

 K_{\parallel} Vs power.

GPR does a good job of removing power at low $K_{||}$ where the foreground is dominant

Future Interferometer Experiments

- Direct imaging instead of
 Statistical detection
- ➤ Compact core ⇒ increased sensitivity
- ➤ Lower frequency ⇒ Larger
 redshifts

Analysing the pstransform plots

Minuv clipped to 50 in Pstransform

