A Generic and Efficient "E-Field Parallel Imaging Correlator" Software For Next-generation Radio Telescopes

Nithyanandan Thyagarajan (ASU, Tempe) Adam P. Beardsley (ASU, Tempe) Judd Bowman (ASU, Tempe) Miguel Morales (UW, Seattle)

Outline

- Motivations for Direct Imaging
- Modular Optimal Frequency Fourier Imaging (MOFF) – A generic direct imaging algorithm
- EPIC implementation of MOFF in software
 - EPIC imaging in action
 - Imaging performance of EPIC vs. FX
- EPIC on future large-N dense array layouts
- Time-domain capability of EPIC
- Testing GPU-based EPIC on HERA

Quick Refresher on Synthesis Imaging

 Interferometers make Fourier plane measurements of spatial structures n the sky

$$v_i = \int \delta(\mathbf{u} - \mathbf{u}_i) \left[\int e^{-i2\pi \mathbf{u} \cdot \boldsymbol{\theta}} B(\boldsymbol{\theta}) I(\boldsymbol{\theta}) d^2 \boldsymbol{\theta} \right] d^2 \mathbf{u} + n_i$$

 Each interferometer samples a spatial wave mode in the sky plane

Motivations for Direct ImagingTechnologicalScientific

- Large collecting areas require large-N arrays
- Cost of the correlator scales as N²

- EoR studies favor dense array layouts
- Transient studies require fast writeouts
 - Ionospheric monitoring

Thornton et al. (2013)

Concept of Direct Imaging

- Antennas placed on a grid and perform spatial FFT of antenna voltages on grid to get complex voltage images
- Square the transformed complex voltage image to obtain real-valued intensity images
- Current implementation:
 - 8x8 array in Japan (Daishido et al. 2000)
 - 4x8 BEST-2 array at Radiotelescopi de Medicina, Italy (Foster et al. 2014)

Need for generic direct imaging Hurdles with current implementations Morales (2011)

- Uniformly arranged arrays have poor point spread functions – thus not ideal for imaging
- Aliasing of objects from outside field of view
- Assumptions of identical antennas => poor calibration
- Calibration still requires
 antenna correlations

- Antennas need not be on a grid but still exploit FFT efficiency
- Can customize to science needs
- Accounts for non-identical antennas
- Calibration does not require forming visibilities
- Can handle complex imaging issues - w-projection, timedependent wide-field refractions and scintillations
- Optimal images

Mathematical basis for MOFF

- Measured visibility is the spatial correlation of measured antenna E-fields
- Antenna power pattern is the correlation of individual voltage patterns
- Visibility measurement equation is separable into antenna measurement equations
- Allows application of "multiplication route" in multiplication-convolution theorem of Fourier Transform (while visibility imaging uses "convolution route")
- FFT efficiency leveraged by gridding E-fields using antenna voltage illumination pattern

EPIC implementation of MOFF imaging

Imaging with EPIC vs. FX

Imaging with EPIC vs. FX (zero spacing)

Gridding differences in MOFF vs. FX

EPIC on actual LWA Data

Implications from Scaling Relations

EPIC

- Most expensive step 2D spatial FFT at every ADC output cycle – O(N_g log N_g)
- For a given N_g, it does not depend on N_a. e.g., dense layouts like HERA, LWA, CHIME
- Thus the array layout can get dense with no additional cost

FX

- Most expensive step FX operations on N² pairs at every ADC output cycle O(N_a²)
- Accumulation in visibilities before imaging offers some advantage
- Advantage lost for large arrays requiring fast writeouts (due to fast transients, rapid fringe rate, ionospheric changes, etc.)

Current and future telescopes in MOFF-FX parameter space

Writeout rates for Transients

	Data rate (EPIC)	Data rate (FX/XF)
Telescope	GB/s	GB/s
LWA1	≃ 3	≃ 24.3
LWA-OV	≃ 12	≃ 24.3
HERA-19	$\lesssim 0.19$	≃ 0.13
HERA-37	$\lesssim 0.19$	≃ 0.5
HERA-331	$\lesssim 3$	≃ 41
CHIME	$\lesssim 6.1$	≃ 610

Assumes writeout timescale of 10 ms

 Data rate ~N_g for MOFF with EPIC

- Data rate ~N_a² for visibilities to be written out
- MOFF using EPIC lowers data rates significantly in modern/future telescopes
- MOFF with EPIC also yields calibrated images on short timescales
- Ideal for bright, fast (FRBs) and slow transients with large-N dense arrays

Proposed EPIC demonstration on HERA

- HERA (Hydrogen Epoch of Reionization Array)
 - B = 100MHz
 - 1024 channels
 - ~100 kHz channels
 - FoV ~ 10 deg. At 150 MHz
 - Compact hexagonal array
 - 14m dishes

- Use HERA prototype GPU-backend as test bed
- HERA will use current PAPER F-engine & GPUs that comprise the X-engine
- Design a GPU-based transient search backend
- NSF-ATI proposal submitted

EPIC Summary

- EPIC is promising for most modern/future telescopes (HERA, LWA, CHIME, SKA1, MWA II core, etc.)
 - EoR studies
 - Large-N dense arrays for sensitivity to large scales
 - Radio Transients
 - Fast writeouts
 - Economic data rates
 - Calibrated images at no additional cost
- EPIC paper Thyagarajan et al. (2015c)
- Highly parallelized EPIC implementation publicly available - <u>https://github.com/nithyanandan/EPIC/</u>
- Results of calibration studies (EPICal Beardsley et al. in prep.) coming soon!