Latest performance prediction of the single pixel feeds for the SKA1-mid array (J2-9)

Isak Theron* and Robert Lehmensiek

EMSS Antennas, iptheron@emss.co.za

Science and technology Department: Science and Technology REPUBLIC OF SOUTH AFRICA

SKA1-mid baseline

- 133 panelled dishes

 Offset Gregorian
 15m projected diameter
- 5 single pixel frequency bands
 - 350 to 1050 MHz (3:1)
 - 950 to 1760 MHz (60%)
 - 1.65 to 3.05 GHz (60%)
 - 2.8 to 5.18 GHz (60%)
 - -4.6 to 13.8 GHz (3:1)

Driving requirement

• Sensitivity

 $A \downarrow e / T \downarrow sys = \eta A \downarrow p / T \downarrow sky + T \downarrow spill + T \downarrow rec$

- Average over band, zenith to 30° elevation*
 - Band 1: 4.2 m²/K
 - Band 2: 7.1 m²/K
 - Band 3: 7.1 m²/K
 - Band 4: 6.6 m²/K
 - Band 5: 6.1 m²/K

* Assuming perfect optics

Improve sensitivity

- Add effective area
 - More physical area is expensive (and locked)
 - Shaped optics to improve efficiency (some cost)Difficult to improve more
- Reduce system noise temperature
 - Cooling as a fraction of total system cost
 - Cool as low as possible
 - Gifford-McMahon cooling
 - Both LNAs and lossy components

Optics configuration

- Shaped reflectors
- Extended sub-reflector (40° from feed point)

 Allow high efficiency without increasing spill-over
 Feed down configuration
- 58° feed half angle
 Optimised suite of feeds
 - Similar to 49° unshaped
 - Similar to MeerKAT
- 5.2m sub-reflector

Gaussian feeds - sensitivity

Optimising the feeds

- Maximum sensitivity
 - Calculate "feed on dish" pattern to determine sensitivity
 - Optimum is dependent on the receiver noise
- Minimum reflection coefficient
 - Can reduce sensitivity
 - Cause frequency ripple if LNAs badly matched
- Limit cross-polarisation
- Some limit on side-lobes

Band 3, 4, 5 feed package

- Band 5 increased in priority during 2015
- Single feed package
 - Coordinated by Oxford University
 - Responsible for cryostat
 - Save power by using a single cold head
 - Provided it can lift the heat load (seems OK)
 - More complicated
 - Optimised multiple heat paths
 - Some feeds (and locations) not fully designed
 - May switch to wideband feeds

Noise temperature estimate

- Vacuum window provides thermal isolation
- Horn to LNA cable critical
- COTS Low Noise Factory LNA
- Reflector contributions larger
- Very preliminary!

	Band 5
Vacuum window	1.5 K
Quad-ridge feed horn	0.7 K
Horn to LNA cable	4.0 K
LNA	6.5 K
Dish structure and digitiser / back end contributions	3.0 K
T _{Receiver}	15.7 K

Band 3, 4, 5 feed package

Band 5 most likely a QRFH similar to Band 1
 JLRAT in China

Band 5 sensitivity

- Average Band 1 efficiency slightly higher
 Assume an efficiency of 75%
- At 13.8 GHz the sky contribution ≈ 7 K
- Even with no spill-over
 - Sensitivity $\approx 5.8 \text{ m}^2/\text{K}$
 - Need to reduce receiver temperature to achieve specified 6.1 m²/K

Band 2 feed package

- Clone of MeerKAT L-band "receiver" – EMSS Antennas
- Axially corrugated feed
- Dipole OMT cooled
 Back short ambient
- HDPE dome vacuum boundary
- Coupler integrated in OMT
 Part of the thermal break

Band 2 feed package

Ortho mode transducer

Calibration noise coupler

Noise temperature estimate

	950 MHz	1760 MHz
Horn and radome	0.1 K	0.1 K
Vacuum window, OMT, Coupler	1.1 K	1.3 K
Coupler to LNA thermal isolation	1.0 K	1.5 K
Coupler output connector	0.5 K	0.5 K
LNA	3.0 K	3.0 K
Post-LNA RF	0.5 K	0.5 K
Dish structure and digitiser / back end contributions	2.0 K	2.0 K
T _{Receiver}	8.2 K	8.9 K

MeerKAT receiver temperature

• Physical 15.7, 17.7, 19.6, 21.6, 23.4 K

17

Optimising the horn

- Wide flare axially symmetric corrugated horn
 - Good pattern symmetry
 - Good cross-polar performance
 - Low loss
- Optimisation parameters
 - Corrugation width, depth and offset
 - Step radius and length
 - Phase centre

EM analysis

- Horn analyses in FEKO
 - Full wave (Method of Moments)
 - 2 planes of symmetry
 - $-TE_{11}$ mode reflection coefficient into free space
 - Spherical mode expansion of radiation pattern
- Dish analyses in GRASP
 - High frequency (Physical Optics with diffraction)
 - Reflector far field from spherical modes
 - Integrate with brightness to get Tantenna

Example horn pattern

USNC-URSI – 6 January 2016

 E_{co} (x-axis): 1420 MHz; D_{o} = 10.02 dBi, @ θ = 12.00^c, ϕ = 180.00^c.

• 950 MHz

• 1335 MHz

• 1760 MHz

Band 2 efficiency

USNC-URSI - 6 January 2016

Band 2 antenna temperature

Band 2 sensitivity

Band 1 feed package

- Chalmers University in Sweden
- Wideband Quad ridge feed horn
 - No logical thermal break
- Low frequency
 - Large aperture
 - Cannot cool entire feed

Band 1 cryogenics

- Cool only LNAs
 - Ambient loss between feed and LNAs
 - Optimised as much as possible
 - Receiver noise
 12.9K @ 350 MHz
 18.3K @ 1050 MHz

• 450 MHz

Optimised feed, dish pattern

• 750 MHz

• 1050 MHz

Band 1 sensitivity

Questions?

