MeerKAT as an SKA-MID Precursor (J2-5)

Justin Jonas (Presented by Isak Theron)

USNC-URSI - Boulder– 6th January 2016

Precursor Activities

- Site & Infrastructure
 - Electrical power supply, conditioning & reticulation, roads, fibre ducts, support buildings & vehicles
- Operations, Maintenance & Logistic support
- Dish Antennas
 - Optical design
 - Mechanical design and fabrication
- Cryogenic Single-Pixel receivers
 - Horn & OMT
 - RF gain & noise source injection
 - Cryogenics (including vacuum and helium services)
 - Local control & monitoring
- Digitizers
 - Spurious Signal Dynamic Range
 - Self-generated RFI (radiated & internal)

Precursor Activities (...cont)

- Signal & Data Transport
 - Distribution of RF clocks and tones
 - Digital signal backhaul & CAM telemetry
 - High-precision absolute time stamping (pulsar timing)
- Central Signal Processing
 - Correlator: CASPER-based (SKARAB aka ROACH-3)
 - Pulsar Search: GPUs
- Science Data Processing
 - 3G+ calibration and imaging
 - Primary beam models and pointing errors
 - Broad range of tools: CASA, MeqTrees, Obit, MIRIAD, etc.
 - Modern deconvolution (MORESANE, etc.)
 - Low-cost/power hardware (compute and storage)
- Acceptance, Integration & Verification
- RFI & EMC

MeerKAT 64 Antenna Array

Bunker – RFI & Temperature

3 (+2) x 1.25 MVA DRUPS

Shielded Room & Equipment Racks

MeerKAT Dish

Receiver Indexer with Horns, Receivers, Digitizers and Services

Pedestal fabrication & integration

Dish panel factory

Carbon-fibre Sub-reflector

Dish Assembly Facility

On-site Production Line

"Traditional" paneled dish

Array Release 1 (14 core + 2)

Imagery Date: 4/8/2013 30°42'47.56" \$ 21°26'31.85" E elev 1052 m eye alt 2.51 km 🔘

As at end November 2015

Receivers & Services Installed

MeerKAT (& SKA) Receiver

EMSS Rx Production Facility

RFI Qualification and Testing

Qualification and Acceptance

- Receptor Test System (RTS) deployed
 - Single dish tests
 - 2->16 element interferometric tests
- Components:
 - Production receivers & digitizers
 - ROACH-2 correlator/beamformer
 - 2 x Ku-band receivers for holography, pointing and gain tests

Tsys @ 65° Elevation

L-band Tipping Curves

Optical Pointing

Ku-band Pointing

Ku-band Holography

Measurement vs Simulation

/data/rts/lband/1449551405.h5: m062 1350MHz

degrees

-20

-24

-28

-32

-36

-44

-48

-52

-56

-6

-12

-18

-24

-36

-42

-48

-54

60

-30 号

2

2

degrees

-40 粤

Closure Phase Distribution

SKARAB – in production

40 GbE

mezzanine

HMC mezzanine (Micron not providing production chips yet)

Logic Layer Substrate

300

(2)

CBF Switch Installed

Science Data Processing

Micro-servers

Storage

MPIfR S-band Rx development

First Batch S-Band LNAs for MeerKAT

01000110 01000110 01010100 01010011 - 01000010 01001011

ProtoNIP

- STFC grant: Ben Stappers (Manchester) & Aris Karastergiou (Oxford)
- Implementation of the Pulsar Search Subelement (PSS) within SKA-MID CSP
- Prototype backend for SKA1 to mitigate risks related to the SKA1
 - Power and cooling, but also related to operational aspects of the cluster in a real environment.
 - Qualification model for CSP CDR.
- Processing nodes, network switches, and the software required to perform the pulsar search.